A survey on evaluation of large language models

Y Chang, X Wang, J Wang, Y Wu, L Yang… - ACM Transactions on …, 2024 - dl.acm.org
Large language models (LLMs) are gaining increasing popularity in both academia and
industry, owing to their unprecedented performance in various applications. As LLMs …

Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

[PDF][PDF] DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.

B Wang, W Chen, H Pei, C **e, M Kang, C Zhang, C Xu… - NeurIPS, 2023 - blogs.qub.ac.uk
Abstract Generative Pre-trained Transformer (GPT) models have exhibited exciting progress
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …

[HTML][HTML] A survey of large language models for healthcare: from data, technology, and applications to accountability and ethics

K He, R Mao, Q Lin, Y Ruan, X Lan, M Feng… - Information …, 2025 - Elsevier
The utilization of large language models (LLMs) for Healthcare has generated both
excitement and concern due to their ability to effectively respond to free-text queries with …

Six human-centered artificial intelligence grand challenges

O Ozmen Garibay, B Winslow, S Andolina… - … Journal of Human …, 2023 - Taylor & Francis
Widespread adoption of artificial intelligence (AI) technologies is substantially affecting the
human condition in ways that are not yet well understood. Negative unintended …

A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Bias mitigation for machine learning classifiers: A comprehensive survey

M Hort, Z Chen, JM Zhang, M Harman… - ACM Journal on …, 2024 - dl.acm.org
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …

Explainable ai: A review of machine learning interpretability methods

P Linardatos, V Papastefanopoulos, S Kotsiantis - Entropy, 2020 - mdpi.com
Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption,
with machine learning systems demonstrating superhuman performance in a significant …

A survey on datasets for fairness‐aware machine learning

T Le Quy, A Roy, V Iosifidis, W Zhang… - … Reviews: Data Mining …, 2022 - Wiley Online Library
As decision‐making increasingly relies on machine learning (ML) and (big) data, the issue
of fairness in data‐driven artificial intelligence systems is receiving increasing attention from …

Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation

K Karkkainen, J Joo - Proceedings of the IEEE/CVF winter …, 2021 - openaccess.thecvf.com
Existing public face image datasets are strongly biased toward Caucasian faces, and other
races (eg, Latino) are significantly underrepresented. The models trained from such datasets …