Techniques and challenges of image segmentation: A review

Y Yu, C Wang, Q Fu, R Kou, F Huang, B Yang, T Yang… - Electronics, 2023 - mdpi.com
Image segmentation, which has become a research hotspot in the field of image processing
and computer vision, refers to the process of dividing an image into meaningful and non …

Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Scale-mae: A scale-aware masked autoencoder for multiscale geospatial representation learning

CJ Reed, R Gupta, S Li, S Brockman… - Proceedings of the …, 2023 - openaccess.thecvf.com
Large, pretrained models are commonly finetuned with imagery that is heavily augmented to
mimic different conditions and scales, with the resulting models used for various tasks with …

Segment, magnify and reiterate: Detecting camouflaged objects the hard way

Q Jia, S Yao, Y Liu, X Fan, R Liu… - Proceedings of the …, 2022 - openaccess.thecvf.com
It is challenging to accurately detect camouflaged objects from their highly similar
surroundings. Existing methods mainly leverage a single-stage detection fashion, while …

Perturbed and strict mean teachers for semi-supervised semantic segmentation

Y Liu, Y Tian, Y Chen, F Liu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Consistency learning using input image, feature, or network perturbations has shown
remarkable results in semi-supervised semantic segmentation, but this approach can be …

Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation

C Yu, C Gao, J Wang, G Yu, C Shen, N Sang - International journal of …, 2021 - Springer
Low-level details and high-level semantics are both essential to the semantic segmentation
task. However, to speed up the model inference, current approaches almost always sacrifice …

Prior guided feature enrichment network for few-shot segmentation

Z Tian, H Zhao, M Shu, Z Yang, R Li… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve
good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation …

Image segmentation using deep learning: A survey

S Minaee, Y Boykov, F Porikli, A Plaza… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Image segmentation is a key task in computer vision and image processing with important
applications such as scene understanding, medical image analysis, robotic perception …

A survey on instance segmentation: state of the art

AM Hafiz, GM Bhat - International journal of multimedia information …, 2020 - Springer
Object detection or localization is an incremental step in progression from coarse to fine
digital image inference. It not only provides the classes of the image objects, but also …

Deep high-resolution representation learning for visual recognition

J Wang, K Sun, T Cheng, B Jiang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
High-resolution representations are essential for position-sensitive vision problems, such as
human pose estimation, semantic segmentation, and object detection. Existing state-of-the …