Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Deep learning, reinforcement learning, and world models
Deep learning (DL) and reinforcement learning (RL) methods seem to be a part of
indispensable factors to achieve human-level or super-human AI systems. On the other …
indispensable factors to achieve human-level or super-human AI systems. On the other …
A survey on offline reinforcement learning: Taxonomy, review, and open problems
RF Prudencio, MROA Maximo… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the widespread adoption of deep learning, reinforcement learning (RL) has
experienced a dramatic increase in popularity, scaling to previously intractable problems …
experienced a dramatic increase in popularity, scaling to previously intractable problems …
A minimalist approach to offline reinforcement learning
Offline reinforcement learning (RL) defines the task of learning from a fixed batch of data.
Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms …
Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms …
Distributed learning in wireless networks: Recent progress and future challenges
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …
applications to efficiently analyze various types of data collected by edge devices for …
Offline reinforcement learning with fisher divergence critic regularization
Many modern approaches to offline Reinforcement Learning (RL) utilize behavior
regularization, typically augmenting a model-free actor critic algorithm with a penalty …
regularization, typically augmenting a model-free actor critic algorithm with a penalty …
Combo: Conservative offline model-based policy optimization
Abstract Model-based reinforcement learning (RL) algorithms, which learn a dynamics
model from logged experience and perform conservative planning under the learned model …
model from logged experience and perform conservative planning under the learned model …
Mildly conservative q-learning for offline reinforcement learning
Offline reinforcement learning (RL) defines the task of learning from a static logged dataset
without continually interacting with the environment. The distribution shift between the …
without continually interacting with the environment. The distribution shift between the …
Rambo-rl: Robust adversarial model-based offline reinforcement learning
Offline reinforcement learning (RL) aims to find performant policies from logged data without
further environment interaction. Model-based algorithms, which learn a model of the …
further environment interaction. Model-based algorithms, which learn a model of the …
Offline-to-online reinforcement learning via balanced replay and pessimistic q-ensemble
Recent advance in deep offline reinforcement learning (RL) has made it possible to train
strong robotic agents from offline datasets. However, depending on the quality of the trained …
strong robotic agents from offline datasets. However, depending on the quality of the trained …
Policy finetuning: Bridging sample-efficient offline and online reinforcement learning
Recent theoretical work studies sample-efficient reinforcement learning (RL) extensively in
two settings: learning interactively in the environment (online RL), or learning from an offline …
two settings: learning interactively in the environment (online RL), or learning from an offline …