A comprehensive survey on community detection with deep learning

X Su, S Xue, F Liu, J Wu, J Yang, C Zhou… - … on Neural Networks …, 2022 - ieeexplore.ieee.org
Detecting a community in a network is a matter of discerning the distinct features and
connections of a group of members that are different from those in other communities. The …

Semi-supervised learning literature survey

XJ Zhu - 2005 - minds.wisconsin.edu
We review some of the literature on semi-supervised learning in this paper. Traditional
classifiers need labeled data (feature/label pairs) to train. Labeled instances however are …

Contrastive multi-view representation learning on graphs

K Hassani, AH Khasahmadi - International conference on …, 2020 - proceedings.mlr.press
We introduce a self-supervised approach for learning node and graph level representations
by contrasting structural views of graphs. We show that unlike visual representation learning …

Beyond homophily in graph neural networks: Current limitations and effective designs

J Zhu, Y Yan, L Zhao, M Heimann… - Advances in neural …, 2020 - proceedings.neurips.cc
We investigate the representation power of graph neural networks in the semi-supervised
node classification task under heterophily or low homophily, ie, in networks where …

Infogcl: Information-aware graph contrastive learning

D Xu, W Cheng, D Luo, H Chen… - Advances in Neural …, 2021 - proceedings.neurips.cc
Various graph contrastive learning models have been proposed to improve the performance
of tasks on graph datasets in recent years. While effective and prevalent, these models are …

Benchmarking graph neural networks

VP Dwivedi, CK Joshi, AT Luu, T Laurent… - Journal of Machine …, 2023 - jmlr.org
In the last few years, graph neural networks (GNNs) have become the standard toolkit for
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …

A survey on semi-supervised learning

JE Van Engelen, HH Hoos - Machine learning, 2020 - Springer
Semi-supervised learning is the branch of machine learning concerned with using labelled
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …

Combining label propagation and simple models out-performs graph neural networks

Q Huang, H He, A Singh, SN Lim… - arxiv preprint arxiv …, 2020 - arxiv.org
Graph Neural Networks (GNNs) are the predominant technique for learning over graphs.
However, there is relatively little understanding of why GNNs are successful in practice and …

Multi-scale attributed node embedding

B Rozemberczki, C Allen… - Journal of Complex …, 2021 - academic.oup.com
We present network embedding algorithms that capture information about a node from the
local distribution over node attributes around it, as observed over random walks following an …

Graph neural networks with heterophily

J Zhu, RA Rossi, A Rao, T Mai, N Lipka… - Proceedings of the …, 2021 - ojs.aaai.org
Abstract Graph Neural Networks (GNNs) have proven to be useful for many different
practical applications. However, many existing GNN models have implicitly assumed …