Power systems optimization under uncertainty: A review of methods and applications
Electric power systems and the companies and customers that interact with them are
experiencing increasing levels of uncertainty due to factors such as renewable energy …
experiencing increasing levels of uncertainty due to factors such as renewable energy …
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Generalizing to unseen domains: A survey on domain generalization
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …
the same. To this end, a key requirement is to develop models that can generalize to unseen …
Trustworthy LLMs: A survey and guideline for evaluating large language models' alignment
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …
Unleashing the power of graph data augmentation on covariate distribution shift
The issue of distribution shifts is emerging as a critical concern in graph representation
learning. From the perspective of invariant learning and stable learning, a recently well …
learning. From the perspective of invariant learning and stable learning, a recently well …
A survey on safety-critical driving scenario generation—A methodological perspective
Autonomous driving systems have witnessed significant development during the past years
thanks to the advance in machine learning-enabled sensing and decision-making …
thanks to the advance in machine learning-enabled sensing and decision-making …
Robust reinforcement learning: A review of foundations and recent advances
Reinforcement learning (RL) has become a highly successful framework for learning in
Markov decision processes (MDP). Due to the adoption of RL in realistic and complex …
Markov decision processes (MDP). Due to the adoption of RL in realistic and complex …
The curious price of distributional robustness in reinforcement learning with a generative model
This paper investigates model robustness in reinforcement learning (RL) via the framework
of distributionally robust Markov decision processes (RMDPs). Despite recent efforts, the …
of distributionally robust Markov decision processes (RMDPs). Despite recent efforts, the …
The road to explainability is paved with bias: Measuring the fairness of explanations
Machine learning models in safety-critical settings like healthcare are often “blackboxes”:
they contain a large number of parameters which are not transparent to users. Post-hoc …
they contain a large number of parameters which are not transparent to users. Post-hoc …