A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Recent advances of continual learning in computer vision: An overview

H Qu, H Rahmani, L Xu, B Williams, J Liu - arxiv preprint arxiv …, 2021 - arxiv.org
In contrast to batch learning where all training data is available at once, continual learning
represents a family of methods that accumulate knowledge and learn continuously with data …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arxiv preprint arxiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

A survey of machine unlearning

TT Nguyen, TT Huynh, Z Ren, PL Nguyen… - arxiv preprint arxiv …, 2022 - arxiv.org
Today, computer systems hold large amounts of personal data. Yet while such an
abundance of data allows breakthroughs in artificial intelligence, and especially machine …

Prompt-aligned gradient for prompt tuning

B Zhu, Y Niu, Y Han, Y Wu… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Thanks to the large pre-trained vision-language models (VLMs) like CLIP, we can craft a
zero-shot classifier by discrete prompt design, eg, the confidence score of an image …

Class-incremental learning by knowledge distillation with adaptive feature consolidation

M Kang, J Park, B Han - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
We present a novel class incremental learning approach based on deep neural networks,
which continually learns new tasks with limited memory for storing examples in the previous …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - International Journal of …, 2024 - Springer
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

Few-shot incremental learning with continually evolved classifiers

C Zhang, N Song, G Lin, Y Zheng… - Proceedings of the …, 2021 - openaccess.thecvf.com
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms
that can continually learn new concepts from a few data points, without forgetting knowledge …

Federated class-incremental learning

J Dong, L Wang, Z Fang, G Sun, S Xu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated learning (FL) has attracted growing attentions via data-private collaborative
training on decentralized clients. However, most existing methods unrealistically assume …