Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU
Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and
artificial intelligence (AI), outperforming traditional ML methods, especially in handling …
artificial intelligence (AI), outperforming traditional ML methods, especially in handling …
[HTML][HTML] Review of image classification algorithms based on convolutional neural networks
L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …
emergence of deep learning has promoted the development of this field. Convolutional …
Diffusion art or digital forgery? investigating data replication in diffusion models
Cutting-edge diffusion models produce images with high quality and customizability,
enabling them to be used for commercial art and graphic design purposes. But do diffusion …
enabling them to be used for commercial art and graphic design purposes. But do diffusion …
Patch-netvlad: Multi-scale fusion of locally-global descriptors for place recognition
Abstract Visual Place Recognition is a challenging task for robotics and autonomous
systems, which must deal with the twin problems of appearance and viewpoint change in an …
systems, which must deal with the twin problems of appearance and viewpoint change in an …
Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study
Convolutional neural networks (CNN) are widely used in computer vision and medical
image analysis as the state-of-the-art technique. In CNN, pooling layers are included mainly …
image analysis as the state-of-the-art technique. In CNN, pooling layers are included mainly …
Opengan: Open-set recognition via open data generation
Real-world machine learning systems need to analyze novel testing data that differs from the
training data. In K-way classification, this is crisply formulated as open-set recognition, core …
training data. In K-way classification, this is crisply formulated as open-set recognition, core …
Pooling methods in deep neural networks, a review
Nowadays, Deep Neural Networks are among the main tools used in various sciences.
Convolutional Neural Network is a special type of DNN consisting of several convolution …
Convolutional Neural Network is a special type of DNN consisting of several convolution …
Deep learning for instance retrieval: A survey
In recent years a vast amount of visual content has been generated and shared from many
fields, such as social media platforms, medical imaging, and robotics. This abundance of …
fields, such as social media platforms, medical imaging, and robotics. This abundance of …
Approximating cnns with bag-of-local-features models works surprisingly well on imagenet
Deep Neural Networks (DNNs) excel on many complex perceptual tasks but it has proven
notoriously difficult to understand how they reach their decisions. We here introduce a high …
notoriously difficult to understand how they reach their decisions. We here introduce a high …
Fine-tuning CNN image retrieval with no human annotation
Image descriptors based on activations of Convolutional Neural Networks (CNNs) have
become dominant in image retrieval due to their discriminative power, compactness of …
become dominant in image retrieval due to their discriminative power, compactness of …