Directed energy deposition (DED) process: state of the art

DG Ahn - International Journal of Precision Engineering and …, 2021 - Springer
Metal additive manufacturing technologies, such as powder bed fusion process, directed
energy deposition (DED) process, sheet lamination process, etc., are one of promising …

Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare

Z Jia, X Xu, D Zhu, Y Zheng - Progress in Materials Science, 2023 - Elsevier
Trauma-and disease-related skeletal defects and illnesses are plaguing millions of people
especially in an ageing globe. Recently, the convergence of additive manufacturing (AM) …

A review on biomedical titanium alloys: recent progress and prospect

LC Zhang, LY Chen - Advanced engineering materials, 2019 - Wiley Online Library
Compared with stainless steel and Co–Cr‐based alloys, Ti and its alloys are widely used as
biomedical implants due to many fascinating properties, such as superior mechanical …

State of the art in directed energy deposition: From additive manufacturing to materials design

A Dass, A Moridi - Coatings, 2019 - mdpi.com
Additive manufacturing (AM) is a new paradigm for the design and production of high-
performance components for aerospace, medical, energy, and automotive applications. This …

Metal additive manufacturing: Technology, metallurgy and modelling

S Cooke, K Ahmadi, S Willerth, R Herring - Journal of Manufacturing …, 2020 - Elsevier
This paper provides a comprehensive review of metal additive manufacturing, a rapidly
evolving field with innovative technologies and processes. The purpose of this review paper …

[HTML][HTML] Design of titanium alloys by additive manufacturing: A critical review

T Zhang, CT Liu - Advanced Powder Materials, 2022 - Elsevier
Additive manufacturing (AM) is an innovative technology that creates objects with a complex
geometry layer-by-layer, and it has rapidly prospered in manufacturing metallic parts for …

[HTML][HTML] Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments

YW Cui, L Wang, LC Zhang - Progress in Materials Science, 2024 - Elsevier
The use of biomedical metallic materials in research and clinical applications has been an
important focus and a significant area of interest, primarily owing to their role in enhancing …

[HTML][HTML] Research progress on the design and performance of porous titanium alloy bone implants

C Song, L Liu, Z Deng, H Lei, F Yuan, Y Yang… - Journal of Materials …, 2023 - Elsevier
The porous structure design of implants can not only obtain a more lightweight implant but
also provide more space for its cell growth. The technology development of additive …

Additive manufacturing of biomaterials

S Bose, D Ke, H Sahasrabudhe… - Progress in materials …, 2018 - Elsevier
Biomaterials are used to engineer functional restoration of different tissues to improve
human health and the quality of life. Biomaterials can be natural or synthetic. Additive …

Recent development in beta titanium alloys for biomedical applications

LY Chen, YW Cui, LC Zhang - Metals, 2020 - mdpi.com
β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in
the past decades due to their low elastic moduli and good biocompatibility. This article …