Machine learning for electrocatalyst and photocatalyst design and discovery

H Mai, TC Le, D Chen, DA Winkler… - Chemical …, 2022 - ACS Publications
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …

Review of progress in calculation and simulation of high-temperature oxidation

D Gao, Z Shen, K Chen, X Zhou, H Liu, J Wang… - Progress in Materials …, 2024 - Elsevier
High-temperature oxidation can precipitate chemical and mechanical degradations in
materials, potentially leading to catastrophic failures. Thus, understanding the mechanisms …

Machine learning for high-entropy alloys: Progress, challenges and opportunities

X Liu, J Zhang, Z Pei - Progress in Materials Science, 2023 - Elsevier
High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional
mechanical properties and the vast compositional space for new HEAs. However …

Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries

N Yao, X Chen, ZH Fu, Q Zhang - Chemical Reviews, 2022 - ACS Publications
Rechargeable batteries have become indispensable implements in our daily life and are
considered a promising technology to construct sustainable energy systems in the future …

Bottom-up coarse-graining: Principles and perspectives

J **, AJ Pak, AEP Durumeric, TD Loose… - Journal of chemical …, 2022 - ACS Publications
Large-scale computational molecular models provide scientists a means to investigate the
effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship …

Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Machine-learned potentials for next-generation matter simulations

P Friederich, F Häse, J Proppe, A Aspuru-Guzik - Nature Materials, 2021 - nature.com
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …

The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts

R Tran, J Lan, M Shuaibi, BM Wood, S Goyal… - ACS …, 2023 - ACS Publications
The development of machine learning models for electrocatalysts requires a broad set of
training data to enable their use across a wide variety of materials. One class of materials …

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Z Fan, Y Wang, P Ying, K Song, J Wang… - The Journal of …, 2022 - pubs.aip.org
We present our latest advancements of machine-learned potentials (MLPs) based on the
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …

Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …