Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Multi-agent reinforcement learning: A review of challenges and applications
In this review, we present an analysis of the most used multi-agent reinforcement learning
algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the …
algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the …
Planning with diffusion for flexible behavior synthesis
Model-based reinforcement learning methods often use learning only for the purpose of
estimating an approximate dynamics model, offloading the rest of the decision-making work …
estimating an approximate dynamics model, offloading the rest of the decision-making work …
Foundation models for decision making: Problems, methods, and opportunities
Foundation models pretrained on diverse data at scale have demonstrated extraordinary
capabilities in a wide range of vision and language tasks. When such models are deployed …
capabilities in a wide range of vision and language tasks. When such models are deployed …
Decision transformer: Reinforcement learning via sequence modeling
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence
modeling problem. This allows us to draw upon the simplicity and scalability of the …
modeling problem. This allows us to draw upon the simplicity and scalability of the …
Offline reinforcement learning as one big sequence modeling problem
Reinforcement learning (RL) is typically viewed as the problem of estimating single-step
policies (for model-free RL) or single-step models (for model-based RL), leveraging the …
policies (for model-free RL) or single-step models (for model-based RL), leveraging the …
Transfer learning in deep reinforcement learning: A survey
Reinforcement learning is a learning paradigm for solving sequential decision-making
problems. Recent years have witnessed remarkable progress in reinforcement learning …
problems. Recent years have witnessed remarkable progress in reinforcement learning …
Curl: Contrastive unsupervised representations for reinforcement learning
Abstract We present CURL: Contrastive Unsupervised Representations for Reinforcement
Learning. CURL extracts high-level features from raw pixels using contrastive learning and …
Learning. CURL extracts high-level features from raw pixels using contrastive learning and …
Deep reinforcement learning for autonomous driving: A survey
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …
(RL) has become a powerful learning framework now capable of learning complex policies …
Efficient and scalable reinforcement learning for large-scale network control
The primary challenge in the development of large-scale artificial intelligence (AI) systems
lies in achieving scalable decision-making—extending the AI models while maintaining …
lies in achieving scalable decision-making—extending the AI models while maintaining …