A comprehensive experiment-based review of low-light image enhancement methods and benchmarking low-light image quality assessment
Low-light image enhancement is a notoriously challenging problem. Enhancement of low-
light images is intended to increase contrast, adjust the tone, suppress noise, and produce …
light images is intended to increase contrast, adjust the tone, suppress noise, and produce …
Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement
Retinex model-based methods have shown to be effective in layer-wise manipulation with
well-designed priors for low-light image enhancement. However, the commonly used hand …
well-designed priors for low-light image enhancement. However, the commonly used hand …
Toward fast, flexible, and robust low-light image enhancement
Existing low-light image enhancement techniques are mostly not only difficult to deal with
both visual quality and computational efficiency but also commonly invalid in unknown …
both visual quality and computational efficiency but also commonly invalid in unknown …
Generative diffusion prior for unified image restoration and enhancement
Existing image restoration methods mostly leverage the posterior distribution of natural
images. However, they often assume known degradation and also require supervised …
images. However, they often assume known degradation and also require supervised …
Retinexformer: One-stage retinex-based transformer for low-light image enhancement
When enhancing low-light images, many deep learning algorithms are based on the Retinex
theory. However, the Retinex model does not consider the corruptions hidden in the dark or …
theory. However, the Retinex model does not consider the corruptions hidden in the dark or …
Diff-retinex: Rethinking low-light image enhancement with a generative diffusion model
In this paper, we rethink the low-light image enhancement task and propose a physically
explainable and generative diffusion model for low-light image enhancement, termed as Diff …
explainable and generative diffusion model for low-light image enhancement, termed as Diff …