Current progress and open challenges for applying deep learning across the biosciences

N Sapoval, A Aghazadeh, MG Nute… - Nature …, 2022 - nature.com
Deep Learning (DL) has recently enabled unprecedented advances in one of the grand
challenges in computational biology: the half-century-old problem of protein structure …

A survey on differential privacy for unstructured data content

Y Zhao, J Chen - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
Huge amounts of unstructured data including image, video, audio, and text are ubiquitously
generated and shared, and it is a challenge to protect sensitive personal information in …

Deep hierarchical semantic segmentation

L Li, T Zhou, W Wang, J Li… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Humans are able to recognize structured relations in observation, allowing us to decompose
complex scenes into simpler parts and abstract the visual world in multiple levels. However …

[SÁCH][B] An introduction to optimization on smooth manifolds

N Boumal - 2023 - books.google.com
Optimization on Riemannian manifolds-the result of smooth geometry and optimization
merging into one elegant modern framework-spans many areas of science and engineering …

Hyperbolic image-text representations

K Desai, M Nickel, T Rajpurohit… - International …, 2023 - proceedings.mlr.press
Visual and linguistic concepts naturally organize themselves in a hierarchy, where a textual
concept" dog" entails all images that contain dogs. Despite being intuitive, current large …

Geom-gcn: Geometric graph convolutional networks

H Pei, B Wei, KCC Chang, Y Lei, B Yang - arxiv preprint arxiv:2002.05287, 2020 - arxiv.org
Message-passing neural networks (MPNNs) have been successfully applied to
representation learning on graphs in a variety of real-world applications. However, two …

Low-dimensional hyperbolic knowledge graph embeddings

I Chami, A Wolf, DC Juan, F Sala, S Ravi… - arxiv preprint arxiv …, 2020 - arxiv.org
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and
relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which …

Hyperbolic graph convolutional neural networks

I Chami, Z Ying, C Ré… - Advances in neural …, 2019 - proceedings.neurips.cc
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space,
which has been shown to incur a large distortion when embedding real-world graphs with …

Hyperbolic vision transformers: Combining improvements in metric learning

A Ermolov, L Mirvakhabova… - Proceedings of the …, 2022 - openaccess.thecvf.com
Metric learning aims to learn a highly discriminative model encouraging the embeddings of
similar classes to be close in the chosen metrics and pushed apart for dissimilar ones. The …

Machine learning on graphs: A model and comprehensive taxonomy

I Chami, S Abu-El-Haija, B Perozzi, C Ré… - Journal of Machine …, 2022 - jmlr.org
There has been a surge of recent interest in graph representation learning (GRL). GRL
methods have generally fallen into three main categories, based on the availability of …