Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Plant disease detection and classification by deep learning—a review
L Li, S Zhang, B Wang - IEEE Access, 2021 - ieeexplore.ieee.org
Deep learning is a branch of artificial intelligence. In recent years, with the advantages of
automatic learning and feature extraction, it has been widely concerned by academic and …
automatic learning and feature extraction, it has been widely concerned by academic and …
Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects
Land-use and land-cover change (LULCC) are of importance in natural resource
management, environmental modelling and assessment, and agricultural production …
management, environmental modelling and assessment, and agricultural production …
Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review
M Sheykhmousa, M Mahdianpari… - IEEE Journal of …, 2020 - ieeexplore.ieee.org
Several machine-learning algorithms have been proposed for remote sensing image
classification during the past two decades. Among these machine learning algorithms …
classification during the past two decades. Among these machine learning algorithms …
Spectral–spatial transformer network for hyperspectral image classification: A factorized architecture search framework
Neural networks have dominated the research of hyperspectral image classification,
attributing to the feature learning capacity of convolution operations. However, the fixed …
attributing to the feature learning capacity of convolution operations. However, the fixed …
Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities
Remote sensing image scene classification, which aims at labeling remote sensing images
with a set of semantic categories based on their contents, has broad applications in a range …
with a set of semantic categories based on their contents, has broad applications in a range …
[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …
deep learning (DL) techniques, which have demonstrated promising results in a wide range …
Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …
Remote sensing image classification: A comprehensive review and applications
Remote sensing is mainly used to investigate sites of dams, bridges, and pipelines to locate
construction materials and provide detailed geographic information. In remote sensing …
construction materials and provide detailed geographic information. In remote sensing …
CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification
Recently, the graph convolutional network (GCN) has drawn increasing attention in the
hyperspectral image (HSI) classification. Compared with the convolutional neural network …
hyperspectral image (HSI) classification. Compared with the convolutional neural network …
Hyperspectral image classification—Traditional to deep models: A survey for future prospects
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …
because it benefits from the detailed spectral information contained in each pixel. Notably …