Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model

J Zhang, X Ma, J Zhang, D Sun, X Zhou, C Mi… - Journal of environmental …, 2023 - Elsevier
The spatial heterogeneity of landslide influencing factors is the main reason for the poor
generalizability of the susceptibility evaluation model. This study aimed to construct a …

[HTML][HTML] Opening the black box: the promise and limitations of explainable machine learning in cardiology

J Petch, S Di, W Nelson - Canadian Journal of Cardiology, 2022 - Elsevier
Many clinicians remain wary of machine learning because of longstanding concerns about
“black box” models.“Black box” is shorthand for models that are sufficiently complex that they …

[HTML][HTML] Significance of machine learning in healthcare: Features, pillars and applications

M Javaid, A Haleem, RP Singh, R Suman… - International Journal of …, 2022 - Elsevier
Abstract Machine Learning (ML) applications are making a considerable impact on
healthcare. ML is a subtype of Artificial Intelligence (AI) technology that aims to improve the …

Opportunities and challenges in explainable artificial intelligence (xai): A survey

A Das, P Rad - arxiv preprint arxiv:2006.11371, 2020 - arxiv.org
Nowadays, deep neural networks are widely used in mission critical systems such as
healthcare, self-driving vehicles, and military which have direct impact on human lives …

Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications

YL Chou, C Moreira, P Bruza, C Ouyang, J Jorge - Information Fusion, 2022 - Elsevier
Deep learning models have achieved high performance across different domains, such as
medical decision-making, autonomous vehicles, decision support systems, among many …

XAI systems evaluation: A review of human and computer-centred methods

P Lopes, E Silva, C Braga, T Oliveira, L Rosado - Applied Sciences, 2022 - mdpi.com
The lack of transparency of powerful Machine Learning systems paired with their growth in
popularity over the last decade led to the emergence of the eXplainable Artificial Intelligence …

Advancing computational toxicology by interpretable machine learning

X Jia, T Wang, H Zhu - Environmental Science & Technology, 2023 - ACS Publications
Chemical toxicity evaluations for drugs, consumer products, and environmental chemicals
have a critical impact on human health. Traditional animal models to evaluate chemical …

Explainability in supply chain operational risk management: A systematic literature review

SF Nimmy, OK Hussain, RK Chakrabortty… - Knowledge-Based …, 2022 - Elsevier
It is important to manage operational disruptions to ensure the success of supply chain
operations. To achieve this aim, researchers have developed techniques that determine the …

Ethical considerations in AI-based recruitment

DF Mujtaba, NR Mahapatra - 2019 IEEE International …, 2019 - ieeexplore.ieee.org
Over the past few years, machine learning and AI have become increasingly common in
human resources (HR) applications, such as candidate screening, resume parsing, and …

[HTML][HTML] Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods

SS Band, A Yarahmadi, CC Hsu, M Biyari… - Informatics in Medicine …, 2023 - Elsevier
This paper investigates the applications of explainable AI (XAI) in healthcare, which aims to
provide transparency, fairness, accuracy, generality, and comprehensibility to the results …