Foundations & trends in multimodal machine learning: Principles, challenges, and open questions
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …
computer agents with intelligent capabilities such as understanding, reasoning, and learning …
Vision-language pre-training: Basics, recent advances, and future trends
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …
intelligence that have been developed in the last few years. We group these approaches …
Vipergpt: Visual inference via python execution for reasoning
Answering visual queries is a complex task that requires both visual processing and
reasoning. End-to-end models, the dominant approach for this task, do not explicitly …
reasoning. End-to-end models, the dominant approach for this task, do not explicitly …
Semantic communications for future internet: Fundamentals, applications, and challenges
With the increasing demand for intelligent services, the sixth-generation (6G) wireless
networks will shift from a traditional architecture that focuses solely on a high transmission …
networks will shift from a traditional architecture that focuses solely on a high transmission …
Crosspoint: Self-supervised cross-modal contrastive learning for 3d point cloud understanding
M Afham, I Dissanayake… - Proceedings of the …, 2022 - openaccess.thecvf.com
Manual annotation of large-scale point cloud dataset for varying tasks such as 3D object
classification, segmentation and detection is often laborious owing to the irregular structure …
classification, segmentation and detection is often laborious owing to the irregular structure …
On the opportunities and risks of foundation models
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …
Mdetr-modulated detection for end-to-end multi-modal understanding
Multi-modal reasoning systems rely on a pre-trained object detector to extract regions of
interest from the image. However, this crucial module is typically used as a black box …
interest from the image. However, this crucial module is typically used as a black box …
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
Foundations and Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …
computer agents with intelligent capabilities such as understanding, reasoning, and learning …
Large-scale adversarial training for vision-and-language representation learning
We present VILLA, the first known effort on large-scale adversarial training for vision-and-
language (V+ L) representation learning. VILLA consists of two training stages:(i) task …
language (V+ L) representation learning. VILLA consists of two training stages:(i) task …