A comprehensive survey on applications of transformers for deep learning tasks

S Islam, H Elmekki, A Elsebai, J Bentahar… - Expert Systems with …, 2024 - Elsevier
Abstract Transformers are Deep Neural Networks (DNN) that utilize a self-attention
mechanism to capture contextual relationships within sequential data. Unlike traditional …

A survey on deep semi-supervised learning

X Yang, Z Song, I King, Z Xu - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Deep semi-supervised learning is a fast-growing field with a range of practical applications.
This paper provides a comprehensive survey on both fundamentals and recent advances in …

Solving olympiad geometry without human demonstrations

TH Trinh, Y Wu, QV Le, H He, T Luong - Nature, 2024 - nature.com
Proving mathematical theorems at the olympiad level represents a notable milestone in
human-level automated reasoning,,–, owing to their reputed difficulty among the world's best …

What can transformers learn in-context? a case study of simple function classes

S Garg, D Tsipras, PS Liang… - Advances in Neural …, 2022 - proceedings.neurips.cc
In-context learning is the ability of a model to condition on a prompt sequence consisting of
in-context examples (input-output pairs corresponding to some task) along with a new query …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Graph neural networks and their current applications in bioinformatics

XM Zhang, L Liang, L Liu, MJ Tang - Frontiers in genetics, 2021 - frontiersin.org
Graph neural networks (GNNs), as a branch of deep learning in non-Euclidean space,
perform particularly well in various tasks that process graph structure data. With the rapid …

Learning to dispatch for job shop scheduling via deep reinforcement learning

C Zhang, W Song, Z Cao, J Zhang… - Advances in neural …, 2020 - proceedings.neurips.cc
Priority dispatching rule (PDR) is widely used for solving real-world Job-shop scheduling
problem (JSSP). However, the design of effective PDRs is a tedious task, requiring a myriad …

Solving mixed integer programs using neural networks

V Nair, S Bartunov, F Gimeno, I Von Glehn… - arxiv preprint arxiv …, 2020 - arxiv.org
Mixed Integer Programming (MIP) solvers rely on an array of sophisticated heuristics
developed with decades of research to solve large-scale MIP instances encountered in …

Towards omni-generalizable neural methods for vehicle routing problems

J Zhou, Y Wu, W Song, Z Cao… - … Conference on Machine …, 2023 - proceedings.mlr.press
Learning heuristics for vehicle routing problems (VRPs) has gained much attention due to
the less reliance on hand-crafted rules. However, existing methods are typically trained and …

[КНИГА][B] Graph representation learning

WL Hamilton - 2020 - books.google.com
This book is a foundational guide to graph representation learning, including state-of-the art
advances, and introduces the highly successful graph neural network (GNN) formalism …