The rise of self-driving labs in chemical and materials sciences

M Abolhasani, E Kumacheva - Nature Synthesis, 2023 - nature.com
Accelerating the discovery of new molecules and materials, as well as develo** green
and sustainable ways to synthesize them, will help to address global challenges in energy …

The reformation of catalyst: From a trial-and-error synthesis to rational design

L Wang, J Wu, S Wang, H Liu, Y Wang, D Wang - Nano Research, 2024 - Springer
The appropriate catalysts can accelerate the reaction rate and effectively boost the efficient
conversion of various molecules, which is of great importance in the study of chemistry …

Predictive analytics and machine learning for real-time supply chain risk mitigation and agility

A Aljohani - Sustainability, 2023 - mdpi.com
Supply chain agility has become a key success factor for businesses trying to handle
upheavals and uncertainty in today's quickly changing business environment. Proactive risk …

Artificial intelligence: A powerful paradigm for scientific research

Y Xu, X Liu, X Cao, C Huang, E Liu, S Qian, X Liu… - The Innovation, 2021 - cell.com
Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well
known from computer science is broadly affecting many aspects of various fields including …

[HTML][HTML] Battery safety: Machine learning-based prognostics

J Zhao, X Feng, Q Pang, M Fowler, Y Lian… - Progress in Energy and …, 2024 - Elsevier
Lithium-ion batteries play a pivotal role in a wide range of applications, from electronic
devices to large-scale electrified transportation systems and grid-scale energy storage …

Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

K Hippalgaonkar, Q Li, X Wang, JW Fisher III… - Nature Reviews …, 2023 - nature.com
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …

[HTML][HTML] Scope of machine learning in materials research—A review

MH Mobarak, MA Mimona, MA Islam, N Hossain… - Applied Surface Science …, 2023 - Elsevier
This comprehensive review investigates the multifaceted applications of machine learning in
materials research across six key dimensions, redefining the field's boundaries. It explains …

Managing innovation in the era of AI

Z Tekic, J Füller - Technology in Society, 2023 - Elsevier
This paper conceptualizes how artificial intelligence (AI) may impact the way companies
innovate and manage their innovation process. A research framework we use in …

Autonomous experimentation systems for materials development: A community perspective

E Stach, B DeCost, AG Kusne, J Hattrick-Simpers… - Matter, 2021 - cell.com
Solutions to many of the world's problems depend upon materials research and
development. However, advanced materials can take decades to discover and decades …

Recent advances and applications of machine learning in solid-state materials science

J Schmidt, MRG Marques, S Botti… - npj computational …, 2019 - nature.com
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …