[HTML][HTML] Interpretable machine learning for building energy management: A state-of-the-art review

Z Chen, F **ao, F Guo, J Yan - Advances in Applied Energy, 2023 - Elsevier
Abstract Machine learning has been widely adopted for improving building energy efficiency
and flexibility in the past decade owing to the ever-increasing availability of massive building …

Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the …

T Ahmad, R Madonski, D Zhang, C Huang… - … and Sustainable Energy …, 2022 - Elsevier
The current trend indicates that energy demand and supply will eventually be controlled by
autonomous software that optimizes decision-making and energy distribution operations …

Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives

Y Hu, Y Man - Renewable and Sustainable Energy Reviews, 2023 - Elsevier
The industrial process consumes substantial energy and emits large amounts of carbon
dioxide. With the help of accurate energy consumption and carbon emissions forecasting …

[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

Load forecasting techniques for power system: Research challenges and survey

N Ahmad, Y Ghadi, M Adnan, M Ali - IEEE Access, 2022 - ieeexplore.ieee.org
The main and pivot part of electric companies is the load forecasting. Decision-makers and
think tank of power sectors should forecast the future need of electricity with large accuracy …

[HTML][HTML] Methods and applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in smart energy management

J Li, MS Herdem, J Nathwani, JZ Wen - Energy and AI, 2023 - Elsevier
Abstract Information technologies involving artificial Intelligence, big data, Internet of Things
devices and blockchain have been developed and implemented in many engineering fields …

Short-term load forecasting based on LSTM networks considering attention mechanism

J Lin, J Ma, J Zhu, Y Cui - International Journal of Electrical Power & Energy …, 2022 - Elsevier
Reliable and accurate zonal electricity load forecasting is essential for power system
operation and planning. Probabilistic load forecasts can present more comprehensive …

Energy forecasting: A review and outlook

T Hong, P Pinson, Y Wang, R Weron… - IEEE Open Access …, 2020 - ieeexplore.ieee.org
Forecasting has been an essential part of the power and energy industry. Researchers and
practitioners have contributed thousands of papers on forecasting electricity demand and …

Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review

F Ahsan, NH Dana, SK Sarker, L Li… - … and Control of …, 2023 - ieeexplore.ieee.org
Meteorological changes urge engineering communities to look for sustainable and clean
energy technologies to keep the environment safe by reducing CO 2 emissions. The …

K-means and alternative clustering methods in modern power systems

SM Miraftabzadeh, CG Colombo, M Longo… - Ieee …, 2023 - ieeexplore.ieee.org
As power systems evolve by integrating renewable energy sources, distributed generation,
and electric vehicles, the complexity of managing these systems increases. With the …