Multi-agent reinforcement learning: A review of challenges and applications

L Canese, GC Cardarilli, L Di Nunzio, R Fazzolari… - Applied Sciences, 2021 - mdpi.com
In this review, we present an analysis of the most used multi-agent reinforcement learning
algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the …

Multi-agent deep reinforcement learning for multi-robot applications: A survey

J Orr, A Dutta - Sensors, 2023 - mdpi.com
Deep reinforcement learning has produced many success stories in recent years. Some
example fields in which these successes have taken place include mathematics, games …

Drone deep reinforcement learning: A review

AT Azar, A Koubaa, N Ali Mohamed, HA Ibrahim… - Electronics, 2021 - mdpi.com
Unmanned Aerial Vehicles (UAVs) are increasingly being used in many challenging and
diversified applications. These applications belong to the civilian and the military fields. To …

Robust reinforcement learning: A review of foundations and recent advances

J Moos, K Hansel, H Abdulsamad, S Stark… - Machine Learning and …, 2022 - mdpi.com
Reinforcement learning (RL) has become a highly successful framework for learning in
Markov decision processes (MDP). Due to the adoption of RL in realistic and complex …

Application of machine learning in water resources management: a systematic literature review

F Ghobadi, D Kang - Water, 2023 - mdpi.com
In accordance with the rapid proliferation of machine learning (ML) and data management,
ML applications have evolved to encompass all engineering disciplines. Owing to the …

Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning

J Hua, L Zeng, G Li, Z Ju - Sensors, 2021 - mdpi.com
Dexterous manipulation of the robot is an important part of realizing intelligence, but
manipulators can only perform simple tasks such as sorting and packing in a structured …

A review of motion planning algorithms for intelligent robots

C Zhou, B Huang, P Fränti - Journal of Intelligent Manufacturing, 2022 - Springer
Principles of typical motion planning algorithms are investigated and analyzed in this paper.
These algorithms include traditional planning algorithms, classical machine learning …

A deep reinforcement learning framework for the financial portfolio management problem

Z Jiang, D Xu, J Liang - arxiv preprint arxiv:1706.10059, 2017 - arxiv.org
Financial portfolio management is the process of constant redistribution of a fund into
different financial products. This paper presents a financial-model-free Reinforcement …

[HTML][HTML] Comprehensive review of deep reinforcement learning methods and applications in economics

A Mosavi, Y Faghan, P Ghamisi, P Duan, SF Ardabili… - Mathematics, 2020 - mdpi.com
The popularity of deep reinforcement learning (DRL) applications in economics has
increased exponentially. DRL, through a wide range of capabilities from reinforcement …