Aerospace integrated networks innovation for empowering 6G: A survey and future challenges

D Zhou, M Sheng, J Li, Z Han - IEEE Communications Surveys …, 2023 - ieeexplore.ieee.org
The ever-increasing demand for ubiquitous and differentiated services at anytime and
anywhere emphasizes the necessity of aerospace integrated networks (AINs) which consist …

Multi-agent reinforcement learning: A review of challenges and applications

L Canese, GC Cardarilli, L Di Nunzio, R Fazzolari… - Applied Sciences, 2021 - mdpi.com
In this review, we present an analysis of the most used multi-agent reinforcement learning
algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the …

Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing

W Xu, Z Yang, DWK Ng, M Levorato… - IEEE journal of …, 2023 - ieeexplore.ieee.org
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …

Multi-agent reinforcement learning based resource management in MEC-and UAV-assisted vehicular networks

H Peng, X Shen - IEEE Journal on Selected Areas in …, 2020 - ieeexplore.ieee.org
In this paper, we investigate multi-dimensional resource management for unmanned aerial
vehicles (UAVs) assisted vehicular networks. To efficiently provide on-demand resource …

Optimizing federated learning in distributed industrial IoT: A multi-agent approach

W Zhang, D Yang, W Wu, H Peng… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
In this paper, we aim to make the best joint decision of device selection and computing and
spectrum resource allocation for optimizing federated learning (FL) performance in …

Towards autonomous multi-UAV wireless network: A survey of reinforcement learning-based approaches

Y Bai, H Zhao, X Zhang, Z Chang… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Unmanned aerial vehicle (UAV)-based wireless networks have received increasing
research interest in recent years and are gradually being utilized in various aspects of our …

Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks

K Zhang, J Cao, Y Zhang - IEEE Transactions on Industrial …, 2021 - ieeexplore.ieee.org
Technological advancements of urban informatics and vehicular intelligence have enabled
connected smart vehicles as pervasive edge computing platforms for a plethora of powerful …

Multi-agent DRL for task offloading and resource allocation in multi-UAV enabled IoT edge network

AM Seid, GO Boateng, B Mareri… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) edge network has connected lots of heterogeneous smart
devices, thanks to unmanned aerial vehicles (UAVs) and their groundbreaking emerging …

Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning

Y Wang, Y Wu, Y Tang, Q Li, H He - Applied Energy, 2023 - Elsevier
The advanced cruise control system has expanded the energy-saving potential of the hybrid
electric vehicle (HEV). Despite this, most energy-saving researches for HEV either only …

Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks

X Liu, Y Liu, Y Chen - IEEE Journal on Selected Areas in …, 2020 - ieeexplore.ieee.org
A novel framework is proposed for integrating reconfigurable intelligent surfaces (RIS) in
unmanned aerial vehicle (UAV) enabled wireless networks, where an RIS is deployed for …