A unifying review of deep and shallow anomaly detection
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …
the art in detection performance on complex data sets, such as large collections of images or …
Deep learning for tomographic image reconstruction
Deep-learning-based tomographic imaging is an important application of artificial
intelligence and a new frontier of machine learning. Deep learning has been widely used in …
intelligence and a new frontier of machine learning. Deep learning has been widely used in …
Diffusion self-guidance for controllable image generation
Large-scale generative models are capable of producing high-quality images from detailed
prompts. However, many aspects of an image are difficult or impossible to convey through …
prompts. However, many aspects of an image are difficult or impossible to convey through …
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …
of clinical experts. However, in settings differing from those of the training dataset, the …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Factorizing knowledge in neural networks
In this paper, we explore a novel and ambitious knowledge-transfer task, termed Knowledge
Factorization (KF). The core idea of KF lies in the modularization and assemblability of …
Factorization (KF). The core idea of KF lies in the modularization and assemblability of …
Toward causal representation learning
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
Giraffe: Representing scenes as compositional generative neural feature fields
Deep generative models allow for photorealistic image synthesis at high resolutions. But for
many applications, this is not enough: content creation also needs to be controllable. While …
many applications, this is not enough: content creation also needs to be controllable. While …
Disentangled representation learning
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying
and disentangling the underlying factors hidden in the observable data in representation …
and disentangling the underlying factors hidden in the observable data in representation …
Self-supervised learning with data augmentations provably isolates content from style
Self-supervised representation learning has shown remarkable success in a number of
domains. A common practice is to perform data augmentation via hand-crafted …
domains. A common practice is to perform data augmentation via hand-crafted …