Global and local scaling limits for the Stieltjes–Wigert random matrix ensemble

PJ Forrester - Random Matrices: Theory and Applications, 2022 - World Scientific
The eigenvalue probability density function (PDF) for the Gaussian unitary ensemble has a
well-known analogy with the Boltzmann factor for a classical log-gas with pair potential− log …

Integrable lattice hierarchies behind Cauchy two-matrix model and Bures ensemble

SH Li, GF Yu - Nonlinearity, 2022 - iopscience.iop.org
This paper focuses on different reductions of the two-dimensional (2d)-Toda hierarchy.
Symmetric and skew-symmetric moment matrices are first considered, resulting in differential …

Relations between moments for the Jacobi and Cauchy random matrix ensembles

PJ Forrester, AA Rahman - Journal of Mathematical Physics, 2021 - pubs.aip.org
We outline a relation between the densities for the β-ensembles with respect to the Jacobi
weight (1− x) a (1+ x) b supported on the interval (− 1, 1) and the Cauchy weight (1− ix) η (1+ …

q-Pearson pair and moments in q-deformed ensembles

PJ Forrester, SH Li, BJ Shen, GF Yu - The Ramanujan Journal, 2023 - Springer
The generalisation of continuous orthogonal polynomial ensembles from random matrix
theory to the q-lattice setting is considered. We take up the task of initiating a systematic …

Classical skew orthogonal polynomials in a two-component log-gas with charges+ 1 and+ 2

PJ Forrester, SH Li - Advances in Mathematics, 2021 - Elsevier
There is a two-component log-gas system with Boltzmann factor which provides an
interpolation between the eigenvalue probability density function (PDF) for β= 1 and β= 4 …

Series over fat partitions: matrix models and discrete ensembles

AY Orlov - arxiv preprint arxiv:2311.12027, 2023 - arxiv.org
We consider series over Young diagrams of products of Schur functions $ s_
{\lambda\cup\lambda} $, marked with``fat partitions''$\lambda\cup\lambda $, which appear in …

Discrete orthogonal ensemble on the exponential lattices

SH Li, BJ Shen, GF Yu, PJ Forrester - Advances in Applied Mathematics, 2025 - Elsevier
Inspired by Aomoto's q-Selberg integral, a study is made of an orthogonal ensemble on an
exponential lattice. By introducing a skew symmetric kernel, the configuration space of this …

Evaluations of certain Catalan-Hankel Pfaffians via classical skew orthogonal polynomials

BJ Shen, SH Li, GF Yu - Journal of Physics A: Mathematical and …, 2021 - iopscience.iop.org
This paper is to evaluate certain Catalan-Hankel Pfaffians by the theory of skew orthogonal
polynomials. Due to different kinds of hypergeometric orthogonal polynomials underlying the …

Rank shift conditions and reductions of 2d-Toda theory

SH Li, GF Yu - arxiv preprint arxiv:1908.08725, 2019 - arxiv.org
This paper focuses on different reductions of 2-dimensional (2d-) Toda hierarchy. Symmetric
and skew symmetric moment matrices are firstly considered, resulting in the differential …

[HTML][HTML] Laurent skew orthogonal polynomials and related symplectic matrices

H Miki - Journal of Approximation Theory, 2020 - Elsevier
Particular class of skew orthogonal polynomials are introduced and investigated, which
possess Laurent symmetry. They are also shown to appear as eigenfunctions of symplectic …