From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond

X Li, H **ong, X Li, X Wu, X Zhang, J Liu, J Bian… - … and Information Systems, 2022 - Springer
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

Visual recognition with deep nearest centroids

W Wang, C Han, T Zhou, D Liu - arxiv preprint arxiv:2209.07383, 2022 - arxiv.org
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective
network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most …

This looks like that: deep learning for interpretable image recognition

C Chen, O Li, D Tao, A Barnett… - Advances in neural …, 2019 - proceedings.neurips.cc
When we are faced with challenging image classification tasks, we often explain our
reasoning by dissecting the image, and pointing out prototypical aspects of one class or …

[PDF][PDF] Why are we using black box models in AI when we don't need to? A lesson from an explainable AI competition

C Rudin, J Radin - Harvard Data Science Review, 2019 - assets.pubpub.org
In 2018, a landmark challenge in artificial intelligence (AI) took place, namely, the
Explainable Machine Learning Challenge. The goal of the competition was to create a …

A survey of visual analytics techniques for machine learning

J Yuan, C Chen, W Yang, M Liu, J **a, S Liu - Computational Visual Media, 2021 - Springer
Visual analytics for machine learning has recently evolved as one of the most exciting areas
in the field of visualization. To better identify which research topics are promising and to …

Protgnn: Towards self-explaining graph neural networks

Z Zhang, Q Liu, H Wang, C Lu, C Lee - Proceedings of the AAAI …, 2022 - ojs.aaai.org
Despite the recent progress in Graph Neural Networks (GNNs), it remains challenging to
explain the predictions made by GNNs. Existing explanation methods mainly focus on post …

Explainable AI for time series classification: a review, taxonomy and research directions

A Theissler, F Spinnato, U Schlegel, R Guidotti - Ieee Access, 2022 - ieeexplore.ieee.org
Time series data is increasingly used in a wide range of fields, and it is often relied on in
crucial applications and high-stakes decision-making. For instance, sensors generate time …

A survey of data-driven and knowledge-aware explainable ai

XH Li, CC Cao, Y Shi, W Bai, H Gao… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
We are witnessing a fast development of Artificial Intelligence (AI), but it becomes
dramatically challenging to explain AI models in the past decade.“Explanation” has a flexible …