Autonomous vehicles enabled by the integration of IoT, edge intelligence, 5G, and blockchain

A Biswas, HC Wang - Sensors, 2023 - mdpi.com
The wave of modernization around us has put the automotive industry on the brink of a
paradigm shift. Leveraging the ever-evolving technologies, vehicles are steadily …

Deep learning-based vehicle behavior prediction for autonomous driving applications: A review

S Mozaffari, OY Al-Jarrah, M Dianati… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Behaviour prediction function of an autonomous vehicle predicts the future states of the
nearby vehicles based on the current and past observations of the surrounding environment …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

Motion transformer with global intention localization and local movement refinement

S Shi, L Jiang, D Dai, B Schiele - Advances in Neural …, 2022 - proceedings.neurips.cc
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to
make safe decisions. Existing works explore to directly predict future trajectories based on …

Hivt: Hierarchical vector transformer for multi-agent motion prediction

Z Zhou, L Ye, J Wang, K Wu… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Accurately predicting the future motions of surrounding traffic agents is critical for the safety
of autonomous vehicles. Recently, vectorized approaches have dominated the motion …

Mtr++: Multi-agent motion prediction with symmetric scene modeling and guided intention querying

S Shi, L Jiang, D Dai, B Schiele - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Motion prediction is crucial for autonomous driving systems to understand complex driving
scenarios and make informed decisions. However, this task is challenging due to the diverse …

Wayformer: Motion forecasting via simple & efficient attention networks

N Nayakanti, R Al-Rfou, A Zhou, K Goel… - … on Robotics and …, 2023 - ieeexplore.ieee.org
Motion forecasting for autonomous driving is a challenging task because complex driving
scenarios involve a heterogeneous mix of static and dynamic inputs. It is an open problem …

Densetnt: End-to-end trajectory prediction from dense goal sets

J Gu, C Sun, H Zhao - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Due to the stochasticity of human behaviors, predicting the future trajectories of road agents
is challenging for autonomous driving. Recently, goal-based multi-trajectory prediction …

Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction

B Varadarajan, A Hefny, A Srivastava… - … on Robotics and …, 2022 - ieeexplore.ieee.org
Predicting the future behavior of road users is one of the most challenging and important
problems in autonomous driving. Applying deep learning to this problem requires fusing …

Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset

S Ettinger, S Cheng, B Caine, C Liu… - Proceedings of the …, 2021 - openaccess.thecvf.com
As autonomous driving systems mature, motion forecasting has received increasing
attention as a critical requirement for planning. Of particular importance are interactive …