Recommender systems in the era of large language models (llms)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys)
have become an important component of our daily life, providing personalized suggestions …
have become an important component of our daily life, providing personalized suggestions …
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
On generative agents in recommendation
Recommender systems are the cornerstone of today's information dissemination, yet a
disconnect between offline metrics and online performance greatly hinders their …
disconnect between offline metrics and online performance greatly hinders their …
[HTML][HTML] Advances and challenges in conversational recommender systems: A survey
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …
heavily used in a wide range of industry applications. However, static recommendation …
Deep reinforcement learning for robotics: A survey of real-world successes
Reinforcement learning (RL), particularly its combination with deep neural networks,
referred to as deep RL (DRL), has shown tremendous promise across a wide range of …
referred to as deep RL (DRL), has shown tremendous promise across a wide range of …
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …
research and several fruitful results in recent years, this survey aims to provide a timely and …
[HTML][HTML] A review on reinforcement learning for contact-rich robotic manipulation tasks
Research and application of reinforcement learning in robotics for contact-rich manipulation
tasks have exploded in recent years. Its ability to cope with unstructured environments and …
tasks have exploded in recent years. Its ability to cope with unstructured environments and …
Harms from increasingly agentic algorithmic systems
Research in Fairness, Accountability, Transparency, and Ethics (FATE) 1 has established
many sources and forms of algorithmic harm, in domains as diverse as health care, finance …
many sources and forms of algorithmic harm, in domains as diverse as health care, finance …
Elastic decision transformer
Abstract This paper introduces Elastic Decision Transformer (EDT), a significant
advancement over the existing Decision Transformer (DT) and its variants. Although DT …
advancement over the existing Decision Transformer (DT) and its variants. Although DT …