Recommender systems in the era of large language models (llms)

Z Zhao, W Fan, J Li, Y Liu, X Mei, Y Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys)
have become an important component of our daily life, providing personalized suggestions …

Reinforcement learning algorithms: A brief survey

AK Shakya, G Pillai, S Chakrabarty - Expert Systems with Applications, 2023 - Elsevier
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …

On generative agents in recommendation

A Zhang, Y Chen, L Sheng, X Wang… - Proceedings of the 47th …, 2024 - dl.acm.org
Recommender systems are the cornerstone of today's information dissemination, yet a
disconnect between offline metrics and online performance greatly hinders their …

[HTML][HTML] Advances and challenges in conversational recommender systems: A survey

C Gao, W Lei, X He, M de Rijke, TS Chua - AI open, 2021 - Elsevier
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …

Deep reinforcement learning for robotics: A survey of real-world successes

C Tang, B Abbatematteo, J Hu… - Annual Review of …, 2024 - annualreviews.org
Reinforcement learning (RL), particularly its combination with deep neural networks,
referred to as deep RL (DRL), has shown tremendous promise across a wide range of …

Ai alignment: A comprehensive survey

J Ji, T Qiu, B Chen, B Zhang, H Lou, K Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …

[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives

X Chen, L Yao, J McAuley, G Zhou, X Wang - Knowledge-Based Systems, 2023 - Elsevier
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …

[HTML][HTML] A review on reinforcement learning for contact-rich robotic manipulation tasks

Í Elguea-Aguinaco, A Serrano-Muñoz… - Robotics and Computer …, 2023 - Elsevier
Research and application of reinforcement learning in robotics for contact-rich manipulation
tasks have exploded in recent years. Its ability to cope with unstructured environments and …

Harms from increasingly agentic algorithmic systems

A Chan, R Salganik, A Markelius, C Pang… - Proceedings of the …, 2023 - dl.acm.org
Research in Fairness, Accountability, Transparency, and Ethics (FATE) 1 has established
many sources and forms of algorithmic harm, in domains as diverse as health care, finance …

Elastic decision transformer

YH Wu, X Wang, M Hamaya - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract This paper introduces Elastic Decision Transformer (EDT), a significant
advancement over the existing Decision Transformer (DT) and its variants. Although DT …