Deep learning-based electroencephalography analysis: a systematic review

Y Roy, H Banville, I Albuquerque… - Journal of neural …, 2019 - iopscience.iop.org
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …

EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their …

X Gu, Z Cao, A Jolfaei, P Xu, D Wu… - … /ACM transactions on …, 2021 - ieeexplore.ieee.org
Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact
with the environment. Recent advancements in technology and machine learning algorithms …

An attention-based deep learning approach for sleep stage classification with single-channel EEG

E Eldele, Z Chen, C Liu, M Wu… - … on Neural Systems …, 2021 - ieeexplore.ieee.org
Automatic sleep stage mymargin classification is of great importance to measure sleep
quality. In this paper, we propose a novel attention-based deep learning architecture called …

Sleeptransformer: Automatic sleep staging with interpretability and uncertainty quantification

H Phan, K Mikkelsen, OY Chén, P Koch… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Background: Black-box skepticism is one of the main hindrances impeding deep-learning-
based automatic sleep scoring from being used in clinical environments. Methods: Towards …

SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging

H Phan, F Andreotti, N Cooray… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Automatic sleep staging has been often treated as a simple classification problem that aims
at determining the label of individual target polysomnography epochs one at a time. In this …

XSleepNet: Multi-view sequential model for automatic sleep staging

H Phan, OY Chén, MC Tran, P Koch… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
Automating sleep staging is vital to scale up sleep assessment and diagnosis to serve
millions experiencing sleep deprivation and disorders and enable longitudinal sleep …

Contrastive representation learning for electroencephalogram classification

MN Mohsenvand, MR Izadi… - Machine Learning for …, 2020 - proceedings.mlr.press
Interpreting and labeling human electroencephalogram (EEG) is a challenging task
requiring years of medical training. We present a framework for learning representations …

A deep learning approach for intrusion detection in Internet of Things using focal loss function

AS Dina, AB Siddique, D Manivannan - Internet of Things, 2023 - Elsevier
Abstract Internet of Things (IoT) is likely to revolutionize healthcare, energy, education,
transportation, manufacturing, military, agriculture, and other industries. However, for the …

U-time: A fully convolutional network for time series segmentation applied to sleep staging

M Perslev, M Jensen, S Darkner… - Advances in Neural …, 2019 - proceedings.neurips.cc
Neural networks are becoming more and more popular for the analysis of physiological time-
series. The most successful deep learning systems in this domain combine convolutional …

Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic …

W Ullah, K Ahmad, S Ullah, AA Tahir, MF Javed… - Heliyon, 2023 - cell.com
Abstract Land Surface Temperature (LST) affects exchange of energy between earth surface
and atmosphere which is important for studying environmental changes. However, research …