Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

B Bischl, M Binder, M Lang, T Pielok… - … : Data Mining and …, 2023 - Wiley Online Library
Most machine learning algorithms are configured by a set of hyperparameters whose values
must be carefully chosen and which often considerably impact performance. To avoid a time …

On hyperparameter optimization of machine learning algorithms: Theory and practice

L Yang, A Shami - Neurocomputing, 2020 - Elsevier
Abstract Machine learning algorithms have been used widely in various applications and
areas. To fit a machine learning model into different problems, its hyper-parameters must be …

Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020

R Turner, D Eriksson, M McCourt… - NeurIPS 2020 …, 2021 - proceedings.mlr.press
This paper presents the results and insights from the black-box optimization (BBO)
challenge at NeurIPS2020 which ran from July–October, 2020. The challenge emphasized …

Bio-inspired computation: Where we stand and what's next

J Del Ser, E Osaba, D Molina, XS Yang… - Swarm and Evolutionary …, 2019 - Elsevier
In recent years, the research community has witnessed an explosion of literature dealing
with the mimicking of behavioral patterns and social phenomena observed in nature towards …

A test-suite of non-convex constrained optimization problems from the real-world and some baseline results

A Kumar, G Wu, MZ Ali, R Mallipeddi… - Swarm and Evolutionary …, 2020 - Elsevier
Real-world optimization problems have been comparatively difficult to solve due to the
complex nature of the objective function with a substantial number of constraints. To deal …

Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems

S Mirjalili, AH Gandomi, SZ Mirjalili, S Saremi… - … in engineering software, 2017 - Elsevier
This work proposes two novel optimization algorithms called Salp Swarm Algorithm (SSA)
and Multi-objective Salp Swarm Algorithm (MSSA) for solving optimization problems with …

Automated algorithm selection: Survey and perspectives

P Kerschke, HH Hoos, F Neumann… - Evolutionary …, 2019 - ieeexplore.ieee.org
It has long been observed that for practically any computational problem that has been
intensely studied, different instances are best solved using different algorithms. This is …

A critical problem in benchmarking and analysis of evolutionary computation methods

J Kudela - Nature Machine Intelligence, 2022 - nature.com
Benchmarking is a cornerstone in the analysis and development of computational methods,
especially in the field of evolutionary computation, where theoretical analysis of the …

Introductory overview: Optimization using evolutionary algorithms and other metaheuristics

HR Maier, S Razavi, Z Kapelan, LS Matott… - … modelling & software, 2019 - Elsevier
Environmental models are used extensively to evaluate the effectiveness of a range of
design, planning, operational, management and policy options. However, the number of …

A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization

M Binois, N Wycoff - ACM Transactions on Evolutionary Learning and …, 2022 - dl.acm.org
Bayesian Optimization (BO), the application of Bayesian function approximation to finding
optima of expensive functions, has exploded in popularity in recent years. In particular, much …