Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Machine learning for alloys
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …
data-science-inspired work. The dawn of computational databases has made the integration …
[HTML][HTML] Scope of machine learning in materials research—A review
This comprehensive review investigates the multifaceted applications of machine learning in
materials research across six key dimensions, redefining the field's boundaries. It explains …
materials research across six key dimensions, redefining the field's boundaries. It explains …
Machine learning-based fatigue life prediction of metal materials: Perspectives of physics-informed and data-driven hybrid methods
H Wang, B Li, J Gong, FZ Xuan - Engineering Fracture Mechanics, 2023 - Elsevier
Fatigue life prediction is critical for ensuring the safe service and the structural integrity of
mechanical structures. Although data-driven approaches have been proven effective in …
mechanical structures. Although data-driven approaches have been proven effective in …
Data quantity governance for machine learning in materials science
Y Liu, Z Yang, X Zou, S Ma, D Liu… - National Science …, 2023 - academic.oup.com
Data-driven machine learning (ML) is widely employed in the analysis of materials structure–
activity relationships, performance optimization and materials design due to its superior …
activity relationships, performance optimization and materials design due to its superior …
Machine learning in materials science
Traditional methods of discovering new materials, such as the empirical trial and error
method and the density functional theory (DFT)‐based method, are unable to keep pace …
method and the density functional theory (DFT)‐based method, are unable to keep pace …
Recent applications of machine learning in alloy design: A review
The history of machine learning (ML) can be traced back to the 1950 s, and its application in
alloy design has recently begun to flourish and expand rapidly. The driving force behind this …
alloy design has recently begun to flourish and expand rapidly. The driving force behind this …
Machine learning for materials scientists: an introductory guide toward best practices
This Methods/Protocols article is intended for materials scientists interested in performing
machine learning-centered research. We cover broad guidelines and best practices …
machine learning-centered research. We cover broad guidelines and best practices …
The role of machine learning in the understanding and design of materials
Develo** algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …
enable us to systematically find novel materials, which can have huge technological and …
Machine learning‐driven biomaterials evolution
Biomaterials is an exciting and dynamic field, which uses a collection of diverse materials to
achieve desired biological responses. While there is constant evolution and innovation in …
achieve desired biological responses. While there is constant evolution and innovation in …