Machine learning for alloys

GLW Hart, T Mueller, C Toher, S Curtarolo - Nature Reviews Materials, 2021 - nature.com
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …

Machine learning in additive manufacturing: State-of-the-art and perspectives

C Wang, XP Tan, SB Tor, CS Lim - Additive Manufacturing, 2020 - Elsevier
Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology.
However, its broad adoption in industry is still hindered by high entry barriers of design for …

A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis

F Rustam, M Khalid, W Aslam, V Rupapara… - Plos one, 2021 - journals.plos.org
The spread of Covid-19 has resulted in worldwide health concerns. Social media is
increasingly used to share news and opinions about it. A realistic assessment of the …

A survey on machine learning techniques for cyber security in the last decade

K Shaukat, S Luo, V Varadharajan, IA Hameed… - IEEE …, 2020 - ieeexplore.ieee.org
Pervasive growth and usage of the Internet and mobile applications have expanded
cyberspace. The cyberspace has become more vulnerable to automated and prolonged …

Deep learning in chemistry

AC Mater, ML Coote - Journal of chemical information and …, 2019 - ACS Publications
Machine learning enables computers to address problems by learning from data. Deep
learning is a type of machine learning that uses a hierarchical recombination of features to …

[HTML][HTML] Deep learning for topology optimization of 2D metamaterials

HT Kollmann, DW Abueidda, S Koric, E Guleryuz… - Materials & Design, 2020 - Elsevier
Data-driven models are rising as an auspicious method for the geometrical design of
materials and structural systems. Nevertheless, existing data-driven models customarily …

CatBoost model and artificial intelligence techniques for corporate failure prediction

SB Jabeur, C Gharib, S Mefteh-Wali, WB Arfi - … Forecasting and Social …, 2021 - Elsevier
Financial distress prediction provides an effective warning system for banks and investors to
correctly guide decisions on granting credit. Ensemble methods have demonstrated their …

On the class overlap problem in imbalanced data classification

P Vuttipittayamongkol, E Elyan, A Petrovski - Knowledge-based systems, 2021 - Elsevier
Class imbalance is an active research area in the machine learning community. However,
existing and recent literature showed that class overlap had a higher negative impact on the …

Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design

A Sharma, T Mukhopadhyay, SM Rangappa… - … Methods in Engineering, 2022 - Springer
The superior multi-functional properties of polymer composites have made them an ideal
choice for aerospace, automobile, marine, civil, and many other technologically demanding …

Machine learning meets with metal organic frameworks for gas storage and separation

C Altintas, OF Altundal, S Keskin… - Journal of Chemical …, 2021 - ACS Publications
The acceleration in design of new metal organic frameworks (MOFs) has led scientists to
focus on high-throughput computational screening (HTCS) methods to quickly assess the …