Edge learning for 6G-enabled internet of things: A comprehensive survey of vulnerabilities, datasets, and defenses

MA Ferrag, O Friha, B Kantarci… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
The deployment of the fifth-generation (5G) wireless networks in Internet of Everything (IoE)
applications and future networks (eg, sixth-generation (6G) networks) has raised a number …

A review of federated learning methods in heterogeneous scenarios

J Pei, W Liu, J Li, L Wang, C Liu - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning emerges as a solution to the dilemma of data silos while safeguarding
data privacy, particularly relevant in the consumer electronics sector where user data privacy …

Federated learning with non-iid data: A survey

Z Lu, H Pan, Y Dai, X Si, Y Zhang - IEEE Internet of Things …, 2024 - ieeexplore.ieee.org
Federated learning (FL) is an efficient decentralized machine learning methodology for
processing nonindependent and identically distributed (non-IID) data due to geographical …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

Enhancing generalization in federated learning with heterogeneous data: A comparative literature review

A Mora, A Bujari, P Bellavista - Future Generation Computer Systems, 2024 - Elsevier
Federated Learning (FL) is a collaborative training paradigm whereby a global Machine
Learning (ML) model is trained using typically private and distributed data sources without …

Horizontal federated recommender system: A survey

L Wang, H Zhou, Y Bao, X Yan, G Shen… - ACM Computing …, 2024 - dl.acm.org
Due to underlying privacy-sensitive information in user-item interaction data, the risk of
privacy leakage exists in the centralized-training recommender system (RecSys). To this …

FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data

Y Shang, S Li - Applied Energy, 2024 - Elsevier
The rising popularity of electric vehicles (EVs) underscores the potential of vehicle-to-grid
(V2G) technology to contribute to load peak-shaving, valley-filling, and photovoltaic (PV) self …

Federated domain generalization: A survey

Y Li, X Wang, R Zeng, PK Donta, I Murturi… - arxiv preprint arxiv …, 2023 - arxiv.org
Machine learning typically relies on the assumption that training and testing distributions are
identical and that data is centrally stored for training and testing. However, in real-world …

Federated learning for healthcare applications

A Chaddad, Y Wu, C Desrosiers - IEEE internet of things …, 2023 - ieeexplore.ieee.org
Due to the fast advancement of artificial intelligence (AI), centralized-based models have
become critical for healthcare tasks like in medical image analysis and human behavior …

A survey on decentralized federated learning

E Gabrielli, G Pica, G Tolomei - arxiv preprint arxiv:2308.04604, 2023 - arxiv.org
In recent years, federated learning (FL) has become a very popular paradigm for training
distributed, large-scale, and privacy-preserving machine learning (ML) systems. In contrast …