A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges

W Li, R Huang, J Li, Y Liao, Z Chen, G He… - … Systems and Signal …, 2022 - Elsevier
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …

Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

A comprehensive review on convolutional neural network in machine fault diagnosis

J Jiao, M Zhao, J Lin, K Liang - Neurocomputing, 2020 - Elsevier
With the rapid development of manufacturing industry, machine fault diagnosis has become
increasingly significant to ensure safe equipment operation and production. Consequently …

Deep learning fault diagnosis method based on global optimization GAN for unbalanced data

F Zhou, S Yang, H Fujita, D Chen, C Wen - Knowledge-Based Systems, 2020 - Elsevier
Deep learning can be applied to the field of fault diagnosis for its powerful feature
representation capabilities. When a certain class fault samples available are very limited, it …

A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks

Z Chen, A Mauricio, W Li, K Gryllias - Mechanical Systems and Signal …, 2020 - Elsevier
Accurate fault diagnosis is critical to ensure the safe and reliable operation of rotating
machinery. Data-driven fault diagnosis techniques based on Deep Learning (DL) have …

Deep-convolution-based LSTM network for remaining useful life prediction

M Ma, Z Mao - IEEE Transactions on Industrial Informatics, 2020 - ieeexplore.ieee.org
Accurate prediction of remaining useful life (RUL) has been a critical and challenging
problem in the field of prognostics and health management (PHM), which aims to make …

Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions

B Zhao, X Zhang, H Li, Z Yang - Knowledge-Based Systems, 2020 - Elsevier
Intelligent fault detection and diagnosis, as an important approach, play a crucial role in
ensuring the stable, reliable and safe operation of rolling bearings, which is one of the most …

A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery

X Wu, Y Zhang, C Cheng, Z Peng - Mechanical Systems and Signal …, 2021 - Elsevier
Accurate fault diagnosis is critical to the safe and reliable operation of rotating machinery.
Intelligent fault diagnosis techniques based on deep learning have recently gained …

Mechanical fault diagnosis using convolutional neural networks and extreme learning machine

Z Chen, K Gryllias, W Li - Mechanical systems and signal processing, 2019 - Elsevier
In the era of the so called 4th industrial revolution, the Factory of the Future and the Industrial
Internet of Things, the industrial mechanical systems become continuously more intelligent …

Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems: a review

S Qiu, X Cui, Z **, N Shan, Z Li, X Bao, X Xu - Sensors, 2023 - mdpi.com
Fault diagnosis and prognosis (FDP) tries to recognize and locate the faults from the
captured sensory data, and also predict their failures in advance, which can greatly help to …