Van der Waals heterostructures for spintronics and opto-spintronics

JF Sierra, J Fabian, RK Kawakami, S Roche… - Nature …, 2021 - nature.com
The large variety of 2D materials and their co-integration in van der Waals heterostructures
enable innovative device engineering. In addition, their atomically thin nature promotes the …

Excitons in semiconductor moiré superlattices

D Huang, J Choi, CK Shih, X Li - Nature nanotechnology, 2022 - nature.com
Semiconductor moiré superlattices represent a rapidly develo** area of engineered
photonic materials and a new platform to explore correlated electron states and quantum …

Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics

A Ciarrocchi, F Tagarelli, A Avsar, A Kis - Nature Reviews Materials, 2022 - nature.com
Abstract 2D semiconducting transition metal dichalcogenides comprise an emerging class of
materials with distinct properties, including large exciton binding energies that reach …

Excitons and emergent quantum phenomena in stacked 2D semiconductors

NP Wilson, W Yao, J Shan, X Xu - Nature, 2021 - nature.com
The design and control of material interfaces is a foundational approach to realize
technologically useful effects and engineer material properties. This is especially true for two …

Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures

Y Jiang, S Chen, W Zheng, B Zheng… - Light: Science & …, 2021 - nature.com
Van der Waals (vdW) heterostructures based on transition metal dichalcogenides (TMDs)
generally possess a type-II band alignment that facilitates the formation of interlayer excitons …

Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices

EC Regan, D Wang, C **, MI Bakti Utama, B Gao… - Nature, 2020 - nature.com
Moiré superlattices can be used to engineer strongly correlated electronic states in two-
dimensional van der Waals heterostructures, as recently demonstrated in the correlated …

Formation of moiré interlayer excitons in space and time

D Schmitt, JP Bange, W Bennecke, AA AlMutairi… - Nature, 2022 - nature.com
Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for
extended control of electronic and valleytronic lifetimes,,,,,–, the confinement of excitons in …

Colloquium: Excitons in atomically thin transition metal dichalcogenides

G Wang, A Chernikov, MM Glazov, TF Heinz… - Reviews of Modern …, 2018 - APS
Atomically thin materials such as graphene and monolayer transition metal dichalcogenides
(TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality …

Ultrafast dynamics in van der Waals heterostructures

C **, EY Ma, O Karni, EC Regan, F Wang… - Nature …, 2018 - nature.com
Van der Waals heterostructures are synthetic quantum materials composed of stacks of
atomically thin two-dimensional (2D) layers. Because the electrons in the atomically thin 2D …

Interlayer valley excitons in heterobilayers of transition metal dichalcogenides

P Rivera, H Yu, KL Seyler, NP Wilson, W Yao… - Nature …, 2018 - nature.com
Stacking different two-dimensional crystals into van der Waals heterostructures provides an
exciting approach to designing quantum materials that can harness and extend the already …