[HTML][HTML] Deep learning attention mechanism in medical image analysis: Basics and beyonds

X Li, M Li, P Yan, G Li, Y Jiang, H Luo… - International Journal of …, 2023 - sciltp.com
With the improvement of hardware computing power and the development of deep learning
algorithms, a revolution of" artificial intelligence (AI)+ medical image" is taking place …

Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends

I Qureshi, J Yan, Q Abbas, K Shaheed, AB Riaz… - Information …, 2023 - Elsevier
Semantic-based segmentation (Semseg) methods play an essential part in medical imaging
analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is …

Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation

R Jiao, Y Zhang, L Ding, B Xue, J Zhang, R Cai… - Computers in Biology …, 2024 - Elsevier
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …

Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency

X Luo, G Wang, W Liao, J Chen, T Song, Y Chen… - Medical Image …, 2022 - Elsevier
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …

A general survey on attention mechanisms in deep learning

G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …

Recent advances and clinical applications of deep learning in medical image analysis

X Chen, X Wang, K Zhang, KM Fung, TC Thai… - Medical image …, 2022 - Elsevier
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …

Rethinking semi-supervised medical image segmentation: A variance-reduction perspective

C You, W Dai, Y Min, F Liu, D Clifton… - Advances in neural …, 2023 - proceedings.neurips.cc
For medical image segmentation, contrastive learning is the dominant practice to improve
the quality of visual representations by contrasting semantically similar and dissimilar pairs …

Weakly supervised machine learning

Z Ren, S Wang, Y Zhang - CAAI Transactions on Intelligence …, 2023 - Wiley Online Library
Supervised learning aims to build a function or model that seeks as many map**s as
possible between the training data and outputs, where each training data will predict as a …

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

Simcvd: Simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation

C You, Y Zhou, R Zhao, L Staib… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Automated segmentation in medical image analysis is a challenging task that requires a
large amount of manually labeled data. However, most existing learning-based approaches …