Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Deep learning attention mechanism in medical image analysis: Basics and beyonds
With the improvement of hardware computing power and the development of deep learning
algorithms, a revolution of" artificial intelligence (AI)+ medical image" is taking place …
algorithms, a revolution of" artificial intelligence (AI)+ medical image" is taking place …
Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends
Semantic-based segmentation (Semseg) methods play an essential part in medical imaging
analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is …
analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is …
Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …
clinical approaches. Recent success of deep learning-based segmentation methods usually …
Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …
performance in many medical image segmentation tasks, they rely on a large set of labeled …
A general survey on attention mechanisms in deep learning
G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …
models across many different domains and tasks. This survey provides an overview of the …
Recent advances and clinical applications of deep learning in medical image analysis
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …
processing algorithms, and deep learning based models have been remarkably successful …
Rethinking semi-supervised medical image segmentation: A variance-reduction perspective
For medical image segmentation, contrastive learning is the dominant practice to improve
the quality of visual representations by contrasting semantically similar and dissimilar pairs …
the quality of visual representations by contrasting semantically similar and dissimilar pairs …
Weakly supervised machine learning
Supervised learning aims to build a function or model that seeks as many map**s as
possible between the training data and outputs, where each training data will predict as a …
possible between the training data and outputs, where each training data will predict as a …
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …
and has achieved remarkable success in many medical imaging applications, thereby …
Simcvd: Simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation
Automated segmentation in medical image analysis is a challenging task that requires a
large amount of manually labeled data. However, most existing learning-based approaches …
large amount of manually labeled data. However, most existing learning-based approaches …