Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation

R Jiao, Y Zhang, L Ding, B Xue, J Zhang, R Cai… - Computers in Biology …, 2024 - Elsevier
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …

[HTML][HTML] Deep learning attention mechanism in medical image analysis: Basics and beyonds

X Li, M Li, P Yan, G Li, Y Jiang, H Luo… - International Journal of …, 2023 - sciltp.com
With the improvement of hardware computing power and the development of deep learning
algorithms, a revolution of" artificial intelligence (AI)+ medical image" is taking place …

Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency

X Luo, G Wang, W Liao, J Chen, T Song, Y Chen… - Medical Image …, 2022 - Elsevier
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …

Recent advances and clinical applications of deep learning in medical image analysis

X Chen, X Wang, K Zhang, KM Fung, TC Thai… - Medical image …, 2022 - Elsevier
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …

A general survey on attention mechanisms in deep learning

G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

Medical image segmentation using deep learning: A survey

R Wang, T Lei, R Cui, B Zhang, H Meng… - IET image …, 2022 - Wiley Online Library
Deep learning has been widely used for medical image segmentation and a large number of
papers has been presented recording the success of deep learning in the field. A …

Semi-supervised medical image segmentation through dual-task consistency

X Luo, J Chen, T Song, G Wang - … of the AAAI conference on artificial …, 2021 - ojs.aaai.org
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising
results in medical images segmentation and can alleviate doctors' expensive annotations by …

Inf-net: Automatic covid-19 lung infection segmentation from ct images

DP Fan, T Zhou, GP Ji, Y Zhou, G Chen… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to
face an existential health crisis. Automated detection of lung infections from computed …

Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends

I Qureshi, J Yan, Q Abbas, K Shaheed, AB Riaz… - Information …, 2023 - Elsevier
Semantic-based segmentation (Semseg) methods play an essential part in medical imaging
analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is …