Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …
clinical approaches. Recent success of deep learning-based segmentation methods usually …
[HTML][HTML] Deep learning attention mechanism in medical image analysis: Basics and beyonds
With the improvement of hardware computing power and the development of deep learning
algorithms, a revolution of" artificial intelligence (AI)+ medical image" is taking place …
algorithms, a revolution of" artificial intelligence (AI)+ medical image" is taking place …
Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …
performance in many medical image segmentation tasks, they rely on a large set of labeled …
Recent advances and clinical applications of deep learning in medical image analysis
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …
processing algorithms, and deep learning based models have been remarkably successful …
A general survey on attention mechanisms in deep learning
G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …
models across many different domains and tasks. This survey provides an overview of the …
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …
and has achieved remarkable success in many medical imaging applications, thereby …
Medical image segmentation using deep learning: A survey
Deep learning has been widely used for medical image segmentation and a large number of
papers has been presented recording the success of deep learning in the field. A …
papers has been presented recording the success of deep learning in the field. A …
Semi-supervised medical image segmentation through dual-task consistency
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising
results in medical images segmentation and can alleviate doctors' expensive annotations by …
results in medical images segmentation and can alleviate doctors' expensive annotations by …
Inf-net: Automatic covid-19 lung infection segmentation from ct images
Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to
face an existential health crisis. Automated detection of lung infections from computed …
face an existential health crisis. Automated detection of lung infections from computed …
Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends
Semantic-based segmentation (Semseg) methods play an essential part in medical imaging
analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is …
analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is …