MIC: Masked image consistency for context-enhanced domain adaptation
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …
adapted to target data (eg real-world) without access to target annotation. Most previous …
Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data
Unsupervised domain adaptation aims to align a labeled source domain and an unlabeled
target domain, but it requires to access the source data which often raises concerns in data …
target domain, but it requires to access the source data which often raises concerns in data …
Sepico: Semantic-guided pixel contrast for domain adaptive semantic segmentation
Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on
an unlabeled target domain by utilizing the supervised model trained on a labeled source …
an unlabeled target domain by utilizing the supervised model trained on a labeled source …
Polarmix: A general data augmentation technique for lidar point clouds
LiDAR point clouds, which are usually scanned by rotating LiDAR sensors continuously,
capture precise geometry of the surrounding environment and are crucial to many …
capture precise geometry of the surrounding environment and are crucial to many …
3d semantic segmentation in the wild: Learning generalized models for adverse-condition point clouds
Robust point cloud parsing under all-weather conditions is crucial to level-5 autonomy in
autonomous driving. However, how to learn a universal 3D semantic segmentation (3DSS) …
autonomous driving. However, how to learn a universal 3D semantic segmentation (3DSS) …
Deformation depth decoupling network for point cloud domain adaptation
Recently, point cloud domain adaptation (DA) practices have been implemented to improve
the generalization ability of deep learning models on point cloud data. However, variations …
the generalization ability of deep learning models on point cloud data. However, variations …
Rda: Robust domain adaptation via fourier adversarial attacking
Unsupervised domain adaptation (UDA) involves a supervised loss in a labeled source
domain and an unsupervised loss in an unlabeled target domain, which often faces more …
domain and an unsupervised loss in an unlabeled target domain, which often faces more …
Da-detr: Domain adaptive detection transformer with information fusion
The recent detection transformer (DETR) simplifies the object detection pipeline by removing
hand-crafted designs and hyperparameters as employed in conventional two-stage object …
hand-crafted designs and hyperparameters as employed in conventional two-stage object …
Coco: A coupled contrastive framework for unsupervised domain adaptive graph classification
Although graph neural networks (GNNs) have achieved impressive achievements in graph
classification, they often need abundant task-specific labels, which could be extensively …
classification, they often need abundant task-specific labels, which could be extensively …
Padclip: Pseudo-labeling with adaptive debiasing in clip for unsupervised domain adaptation
Abstract Traditional Unsupervised Domain Adaptation (UDA) leverages the labeled source
domain to tackle the learning tasks on the unlabeled target domain. It can be more …
domain to tackle the learning tasks on the unlabeled target domain. It can be more …