Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Variational quantum algorithms

M Cerezo, A Arrasmith, R Babbush… - Nature Reviews …, 2021 - nature.com
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

Connecting ansatz expressibility to gradient magnitudes and barren plateaus

Z Holmes, K Sharma, M Cerezo, PJ Coles - PRX quantum, 2022 - APS
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …

Exponential concentration in quantum kernel methods

S Thanasilp, S Wang, M Cerezo, Z Holmes - Nature communications, 2024 - nature.com
Abstract Kernel methods in Quantum Machine Learning (QML) have recently gained
significant attention as a potential candidate for achieving a quantum advantage in data …

Absence of barren plateaus in quantum convolutional neural networks

A Pesah, M Cerezo, S Wang, T Volkoff, AT Sornborger… - Physical Review X, 2021 - APS
Quantum neural networks (QNNs) have generated excitement around the possibility of
efficiently analyzing quantum data. But this excitement has been tempered by the existence …

Information-theoretic bounds on quantum advantage in machine learning

HY Huang, R Kueng, J Preskill - Physical Review Letters, 2021 - APS
We study the performance of classical and quantum machine learning (ML) models in
predicting outcomes of physical experiments. The experiments depend on an input …

Representation theory for geometric quantum machine learning

M Ragone, P Braccia, QT Nguyen, L Schatzki… - arxiv preprint arxiv …, 2022 - arxiv.org
Recent advances in classical machine learning have shown that creating models with
inductive biases encoding the symmetries of a problem can greatly improve performance …

Out-of-distribution generalization for learning quantum dynamics

MC Caro, HY Huang, N Ezzell, J Gibbs… - Nature …, 2023 - nature.com
Generalization bounds are a critical tool to assess the training data requirements of
Quantum Machine Learning (QML). Recent work has established guarantees for in …

Quantum machine learning for chemistry and physics

M Sajjan, J Li, R Selvarajan, SH Sureshbabu… - Chemical Society …, 2022 - pubs.rsc.org
Machine learning (ML) has emerged as a formidable force for identifying hidden but
pertinent patterns within a given data set with the objective of subsequent generation of …