Graph neural networks

G Corso, H Stark, S Jegelka, T Jaakkola… - Nature Reviews …, 2024 - nature.com
Graphs are flexible mathematical objects that can represent many entities and knowledge
from different domains, including in the life sciences. Graph neural networks (GNNs) are …

Generative models for molecular discovery: Recent advances and challenges

C Bilodeau, W **, T Jaakkola… - Wiley …, 2022 - Wiley Online Library
Abstract Development of new products often relies on the discovery of novel molecules.
While conventional molecular design involves using human expertise to propose …

Equivariant diffusion for molecule generation in 3d

E Hoogeboom, VG Satorras… - … on machine learning, 2022 - proceedings.mlr.press
This work introduces a diffusion model for molecule generation in 3D that is equivariant to
Euclidean transformations. Our E (3) Equivariant Diffusion Model (EDM) learns to denoise a …

Multi-modal molecule structure–text model for text-based retrieval and editing

S Liu, W Nie, C Wang, J Lu, Z Qiao, L Liu… - Nature Machine …, 2023 - nature.com
There is increasing adoption of artificial intelligence in drug discovery. However, existing
studies use machine learning to mainly utilize the chemical structures of molecules but …

[HTML][HTML] CREST—A program for the exploration of low-energy molecular chemical space

P Pracht, S Grimme, C Bannwarth, F Bohle… - The Journal of …, 2024 - pubs.aip.org
Conformer–rotamer sampling tool (CREST) is an open-source program for the efficient and
automated exploration of molecular chemical space. Originally developed in Pracht et …

Uni-mol: A universal 3d molecular representation learning framework

G Zhou, Z Gao, Q Ding, H Zheng, H Xu, Z Wei, L Zhang… - 2023 - chemrxiv.org
Molecular representation learning (MRL) has gained tremendous attention due to its critical
role in learning from limited supervised data for applications like drug design. In most MRL …

Torsional diffusion for molecular conformer generation

B **g, G Corso, J Chang… - Advances in neural …, 2022 - proceedings.neurips.cc
Molecular conformer generation is a fundamental task in computational chemistry. Several
machine learning approaches have been developed, but none have outperformed state-of …

Equivariant 3D-conditional diffusion model for molecular linker design

I Igashov, H Stärk, C Vignac, A Schneuing… - Nature Machine …, 2024 - nature.com
Fragment-based drug discovery has been an effective paradigm in early-stage drug
development. An open challenge in this area is designing linkers between disconnected …

Geodiff: A geometric diffusion model for molecular conformation generation

M Xu, L Yu, Y Song, C Shi, S Ermon, J Tang - arxiv preprint arxiv …, 2022 - arxiv.org
Predicting molecular conformations from molecular graphs is a fundamental problem in
cheminformatics and drug discovery. Recently, significant progress has been achieved with …

Pre-training molecular graph representation with 3d geometry

S Liu, H Wang, W Liu, J Lasenby, H Guo… - arxiv preprint arxiv …, 2021 - arxiv.org
Molecular graph representation learning is a fundamental problem in modern drug and
material discovery. Molecular graphs are typically modeled by their 2D topological …