Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

An overview of multi-agent reinforcement learning from game theoretical perspective

Y Yang, J Wang - arxiv preprint arxiv:2011.00583, 2020 - arxiv.org
Following the remarkable success of the AlphaGO series, 2019 was a booming year that
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …

A theoretical analysis of deep Q-learning

J Fan, Z Wang, Y **e, Z Yang - Learning for dynamics and …, 2020 - proceedings.mlr.press
Despite the great empirical success of deep reinforcement learning, its theoretical
foundation is less well understood. In this work, we make the first attempt to theoretically …

A survey and critique of multiagent deep reinforcement learning

P Hernandez-Leal, B Kartal, ME Taylor - Autonomous Agents and Multi …, 2019 - Springer
Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has
led to a dramatic increase in the number of applications and methods. Recent works have …

Independent policy gradient methods for competitive reinforcement learning

C Daskalakis, DJ Foster… - Advances in neural …, 2020 - proceedings.neurips.cc
We obtain global, non-asymptotic convergence guarantees for independent learning
algorithms in competitive reinforcement learning settings with two agents (ie, zero-sum …

Model-based multi-agent rl in zero-sum markov games with near-optimal sample complexity

K Zhang, S Kakade, T Basar… - Advances in Neural …, 2020 - proceedings.neurips.cc
Abstract Model-based reinforcement learning (RL), which finds an optimal policy using an
empirical model, has long been recognized as one of the cornerstones of RL. It is especially …

Decentralized Q-learning in zero-sum Markov games

M Sayin, K Zhang, D Leslie, T Basar… - Advances in Neural …, 2021 - proceedings.neurips.cc
We study multi-agent reinforcement learning (MARL) in infinite-horizon discounted zero-sum
Markov games. We focus on the practical but challenging setting of decentralized MARL …

Learning mean-field games

X Guo, A Hu, R Xu, J Zhang - Advances in neural …, 2019 - proceedings.neurips.cc
This paper presents a general mean-field game (GMFG) framework for simultaneous
learning and decision-making in stochastic games with a large population. It first establishes …

Fictitious play for mean field games: Continuous time analysis and applications

S Perrin, J Pérolat, M Laurière… - Advances in neural …, 2020 - proceedings.neurips.cc
In this paper, we deepen the analysis of continuous time Fictitious Play learning algorithm to
the consideration of various finite state Mean Field Game settings (finite horizon, $\gamma …

Last-iterate convergence of decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games

CY Wei, CW Lee, M Zhang… - Conference on learning …, 2021 - proceedings.mlr.press
We study infinite-horizon discounted two-player zero-sum Markov games, and develop a
decentralized algorithm that provably converges to the set of Nash equilibria under self-play …