Model compression and hardware acceleration for neural networks: A comprehensive survey
Domain-specific hardware is becoming a promising topic in the backdrop of improvement
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
Machine learning for microcontroller-class hardware: A review
The advancements in machine learning (ML) opened a new opportunity to bring intelligence
to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML …
to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML …
On-device training under 256kb memory
On-device training enables the model to adapt to new data collected from the sensors by
fine-tuning a pre-trained model. Users can benefit from customized AI models without having …
fine-tuning a pre-trained model. Users can benefit from customized AI models without having …
Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks
The growing energy and performance costs of deep learning have driven the community to
reduce the size of neural networks by selectively pruning components. Similarly to their …
reduce the size of neural networks by selectively pruning components. Similarly to their …
Pruning and quantization for deep neural network acceleration: A survey
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …
abilities in the field of computer vision. However, complex network architectures challenge …
Efficient acceleration of deep learning inference on resource-constrained edge devices: A review
Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted
in breakthroughs in many areas. However, deploying these highly accurate models for data …
in breakthroughs in many areas. However, deploying these highly accurate models for data …
Machine learning at facebook: Understanding inference at the edge
At Facebook, machine learning provides a wide range of capabilities that drive many
aspects of user experience including ranking posts, content understanding, object detection …
aspects of user experience including ranking posts, content understanding, object detection …
Machine learning at the network edge: A survey
Resource-constrained IoT devices, such as sensors and actuators, have become ubiquitous
in recent years. This has led to the generation of large quantities of data in real-time, which …
in recent years. This has led to the generation of large quantities of data in real-time, which …
A configurable cloud-scale DNN processor for real-time AI
Interactive AI-powered services require low-latency evaluation of deep neural network
(DNN) models-aka"" real-time AI"". The growing demand for computationally expensive …
(DNN) models-aka"" real-time AI"". The growing demand for computationally expensive …
Efficient processing of deep neural networks: A tutorial and survey
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI)
applications including computer vision, speech recognition, and robotics. While DNNs …
applications including computer vision, speech recognition, and robotics. While DNNs …