Quantum science with optical tweezer arrays of ultracold atoms and molecules
Single atoms and molecules can be trapped in tightly focused beams of light that form
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
Quantum computing with atomic qubits and Rydberg interactions: progress and challenges
M Saffman - Journal of Physics B: Atomic, Molecular and Optical …, 2016 - iopscience.iop.org
We present a review of quantum computation with neutral atom qubits. After an overview of
architectural options and approaches to preparing large qubit arrays we examine Rydberg …
architectural options and approaches to preparing large qubit arrays we examine Rydberg …
Atom-by-atom assembly of defect-free one-dimensional cold atom arrays
The realization of large-scale fully controllable quantum systems is an exciting frontier in
modern physical science. We use atom-by-atom assembly to implement a platform for the …
modern physical science. We use atom-by-atom assembly to implement a platform for the …
High-fidelity entanglement and detection of alkaline-earth Rydberg atoms
Trapped neutral atoms have become a prominent platform for quantum science, where
entanglement fidelity records have been set using highly excited Rydberg states. However …
entanglement fidelity records have been set using highly excited Rydberg states. However …
Rydberg atom quantum technologies
This topical review addresses how Rydberg atoms can serve as building blocks for
emerging quantum technologies. Whereas the fabrication of large numbers of artificial …
emerging quantum technologies. Whereas the fabrication of large numbers of artificial …
Noisy intermediate-scale quantum computers
Quantum computers have made extraordinary progress over the past decade, and
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice
Quantum walks provide a framework for designing quantum algorithms that is both intuitive
and universal. To leverage the computational power of these walks, it is important to be able …
and universal. To leverage the computational power of these walks, it is important to be able …
Alkaline-earth atoms in optical tweezers
We demonstrate single-shot imaging and narrow-line cooling of individual alkaline-earth
atoms in optical tweezers; specifically, strontium trapped in 515.2-nm light. Our approach …
atoms in optical tweezers; specifically, strontium trapped in 515.2-nm light. Our approach …
Quantum computing and simulations for energy applications: Review and perspective
Quantum computing and simulations are creating transformative opportunities by exploiting
the principles of quantum mechanics in new ways to generate and process information. It is …
the principles of quantum mechanics in new ways to generate and process information. It is …
Entanglement in indistinguishable particle systems
For systems consisting of distinguishable particles, there exists an agreed upon notion of
entanglement which is fundamentally based on the possibility of addressing individually …
entanglement which is fundamentally based on the possibility of addressing individually …