Stochastic mirror descent: Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize
We investigate the convergence of stochastic mirror descent (SMD) under interpolation in
relatively smooth and smooth convex optimization. In relatively smooth convex optimization …
relatively smooth and smooth convex optimization. In relatively smooth convex optimization …
Oracle complexity of single-loop switching subgradient methods for non-smooth weakly convex functional constrained optimization
We consider a non-convex constrained optimization problem, where the objective function is
weakly convex and the constraint function is either convex or weakly convex. To solve this …
weakly convex and the constraint function is either convex or weakly convex. To solve this …
Analogues of switching subgradient schemes for relatively Lipschitz-continuous convex programming problems
AA Titov, FS Stonyakin, MS Alkousa, SS Ablaev… - … Optimization Theory and …, 2020 - Springer
Recently some specific classes of non-smooth and non-Lipsch-itz convex optimization
problems were considered by Yu. Nesterov and H. Lu. We consider convex programming …
problems were considered by Yu. Nesterov and H. Lu. We consider convex programming …
Primal-dual stochastic mirror descent for MDPs
We consider the problem of learning the optimal policy for infinite-horizon Markov decision
processes (MDPs). For this purpose, some variant of Stochastic Mirror Descent is proposed …
processes (MDPs). For this purpose, some variant of Stochastic Mirror Descent is proposed …
Mirror Descent Methods with Weighting Scheme for Outputs for Constrained Variational Inequality Problems
MS Alkousa, BA Alashqar, FS Stonyakin… - arxiv preprint arxiv …, 2025 - arxiv.org
This paper is devoted to the variational inequality problems. We consider two classes of
problems, the first is classical constrained variational inequality and the second is the same …
problems, the first is classical constrained variational inequality and the second is the same …
Adaptive mirror descent for the network utility maximization problem
Network utility maximization is the most important problem in network traffic management.
Given the growth of modern communication networks, we consider utility maximization …
Given the growth of modern communication networks, we consider utility maximization …
Stochastic incremental mirror descent algorithms with Nesterov smoothing
S Bitterlich, SM Grad - Numerical Algorithms, 2024 - Springer
For minimizing a sum of finitely many proper, convex and lower semicontinuous functions
over a nonempty closed convex set in an Euclidean space we propose a stochastic …
over a nonempty closed convex set in an Euclidean space we propose a stochastic …
Numerical splitting methods for nonsmooth convex optimization problems
MSS Bitterlich - 2023 - monarch.qucosa.de
Abstract (EN) In this thesis, we develop and investigate numerical methods for solving
nonsmooth convex optimization problems in real Hilbert spaces. We construct algorithms …
nonsmooth convex optimization problems in real Hilbert spaces. We construct algorithms …
О методах зеркального спуска для некоторых типов задач композитной оптимизации с функциональными ограничениями
СС Аблаев, ИВ Баран - Таврический вестник информатики и …, 2023 - mathnet.ru
Работа посвящена некоторым методам зеркального спуска для задач выпуклой
композитной оптимизации, а также теоретическим оценкам скорости сходимости для …
композитной оптимизации, а также теоретическим оценкам скорости сходимости для …
[HTML][HTML] Численные методы решения негладких задач выпуклой оптимизации с функциональными ограничениями/Numerical Methods for Non-Smooth Convex …
А Мохаммад - 2020 - dissercat.com
2.7 The results of Algorithms 2 (AMD-LG) and 5 (PAMD-LG), when Mg< 1, with m= 500, r=
100, n= 2000 and e= 0.05. The logarithmic scale on both axes in all figures2.8 The results of …
100, n= 2000 and e= 0.05. The logarithmic scale on both axes in all figures2.8 The results of …