Stochastic mirror descent: Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize

R D'Orazio, N Loizou, I Laradji, I Mitliagkas - arxiv preprint arxiv …, 2021 - arxiv.org
We investigate the convergence of stochastic mirror descent (SMD) under interpolation in
relatively smooth and smooth convex optimization. In relatively smooth convex optimization …

Oracle complexity of single-loop switching subgradient methods for non-smooth weakly convex functional constrained optimization

Y Huang, Q Lin - Advances in Neural Information …, 2024 - proceedings.neurips.cc
We consider a non-convex constrained optimization problem, where the objective function is
weakly convex and the constraint function is either convex or weakly convex. To solve this …

Analogues of switching subgradient schemes for relatively Lipschitz-continuous convex programming problems

AA Titov, FS Stonyakin, MS Alkousa, SS Ablaev… - … Optimization Theory and …, 2020 - Springer
Recently some specific classes of non-smooth and non-Lipsch-itz convex optimization
problems were considered by Yu. Nesterov and H. Lu. We consider convex programming …

Primal-dual stochastic mirror descent for MDPs

D Tiapkin, A Gasnikov - International Conference on Artificial …, 2022 - proceedings.mlr.press
We consider the problem of learning the optimal policy for infinite-horizon Markov decision
processes (MDPs). For this purpose, some variant of Stochastic Mirror Descent is proposed …

Mirror Descent Methods with Weighting Scheme for Outputs for Constrained Variational Inequality Problems

MS Alkousa, BA Alashqar, FS Stonyakin… - arxiv preprint arxiv …, 2025 - arxiv.org
This paper is devoted to the variational inequality problems. We consider two classes of
problems, the first is classical constrained variational inequality and the second is the same …

Adaptive mirror descent for the network utility maximization problem

A Ivanova, F Stonyakin, D Pasechnyuk, E Vorontsova… - IFAC-PapersOnLine, 2020 - Elsevier
Network utility maximization is the most important problem in network traffic management.
Given the growth of modern communication networks, we consider utility maximization …

Stochastic incremental mirror descent algorithms with Nesterov smoothing

S Bitterlich, SM Grad - Numerical Algorithms, 2024 - Springer
For minimizing a sum of finitely many proper, convex and lower semicontinuous functions
over a nonempty closed convex set in an Euclidean space we propose a stochastic …

Numerical splitting methods for nonsmooth convex optimization problems

MSS Bitterlich - 2023 - monarch.qucosa.de
Abstract (EN) In this thesis, we develop and investigate numerical methods for solving
nonsmooth convex optimization problems in real Hilbert spaces. We construct algorithms …

О методах зеркального спуска для некоторых типов задач композитной оптимизации с функциональными ограничениями

СС Аблаев, ИВ Баран - Таврический вестник информатики и …, 2023 - mathnet.ru
Работа посвящена некоторым методам зеркального спуска для задач выпуклой
композитной оптимизации, а также теоретическим оценкам скорости сходимости для …

[HTML][HTML] Численные методы решения негладких задач выпуклой оптимизации с функциональными ограничениями/Numerical Methods for Non-Smooth Convex …

А Мохаммад - 2020 - dissercat.com
2.7 The results of Algorithms 2 (AMD-LG) and 5 (PAMD-LG), when Mg< 1, with m= 500, r=
100, n= 2000 and e= 0.05. The logarithmic scale on both axes in all figures2.8 The results of …