Recent advances in Bayesian optimization

X Wang, Y **, S Schmitt, M Olhofer - ACM Computing Surveys, 2023 - dl.acm.org
Bayesian optimization has emerged at the forefront of expensive black-box optimization due
to its data efficiency. Recent years have witnessed a proliferation of studies on the …

Bayesian optimization for adaptive experimental design: A review

S Greenhill, S Rana, S Gupta, P Vellanki… - IEEE …, 2020 - ieeexplore.ieee.org
Bayesian optimisation is a statistical method that efficiently models and optimises expensive
“black-box” functions. This review considers the application of Bayesian optimisation to …

The frontier of simulation-based inference

K Cranmer, J Brehmer… - Proceedings of the …, 2020 - National Acad Sciences
Many domains of science have developed complex simulations to describe phenomena of
interest. While these simulations provide high-fidelity models, they are poorly suited for …

[PDF][PDF] Hyperparameter optimization

M Feurer, F Hutter - Automated machine learning: Methods …, 2019 - library.oapen.org
Recent interest in complex and computationally expensive machine learning models with
many hyperparameters, such as automated machine learning (AutoML) frameworks and …

Neural architecture search: Insights from 1000 papers

C White, M Safari, R Sukthanker, B Ru, T Elsken… - arxiv preprint arxiv …, 2023 - arxiv.org
In the past decade, advances in deep learning have resulted in breakthroughs in a variety of
areas, including computer vision, natural language understanding, speech recognition, and …

Auto-sklearn 2.0: Hands-free automl via meta-learning

M Feurer, K Eggensperger, S Falkner… - Journal of Machine …, 2022 - jmlr.org
Automated Machine Learning (AutoML) supports practitioners and researchers with the
tedious task of designing machine learning pipelines and has recently achieved substantial …

Random search and reproducibility for neural architecture search

L Li, A Talwalkar - Uncertainty in artificial intelligence, 2020 - proceedings.mlr.press
Neural architecture search (NAS) is a promising research direction that has the potential to
replace expert-designed networks with learned, task-specific architectures. In order to help …

Neural architecture search with bayesian optimisation and optimal transport

K Kandasamy, W Neiswanger… - Advances in neural …, 2018 - proceedings.neurips.cc
Bayesian Optimisation (BO) refers to a class of methods for global optimisation of a function f
which is only accessible via point evaluations. It is typically used in settings where f is …

Hyperband: A novel bandit-based approach to hyperparameter optimization

L Li, K Jamieson, G DeSalvo, A Rostamizadeh… - Journal of Machine …, 2018 - jmlr.org
Performance of machine learning algorithms depends critically on identifying a good set of
hyperparameters. While recent approaches use Bayesian optimization to adaptively select …

Accelerating bayesian optimization for biological sequence design with denoising autoencoders

S Stanton, W Maddox, N Gruver… - International …, 2022 - proceedings.mlr.press
Bayesian optimization (BayesOpt) is a gold standard for query-efficient continuous
optimization. However, its adoption for drug design has been hindered by the discrete, high …