Applications of physics-informed neural networks in power systems-a review

B Huang, J Wang - IEEE Transactions on Power Systems, 2022 - ieeexplore.ieee.org
The advances of deep learning (DL) techniques bring new opportunities to numerous
intractable tasks in power systems (PSs). Nevertheless, the extension of the application of …

The safety filter: A unified view of safety-critical control in autonomous systems

KC Hsu, H Hu, JF Fisac - Annual Review of Control, Robotics …, 2023 - annualreviews.org
Recent years have seen significant progress in the realm of robot autonomy, accompanied
by the expanding reach of robotic technologies. However, the emergence of new …

[PDF][PDF] Trustllm: Trustworthiness in large language models

L Sun, Y Huang, H Wang, S Wu, Q Zhang… - arxiv preprint arxiv …, 2024 - mosis.eecs.utk.edu
Large language models (LLMs), exemplified by ChatGPT, have gained considerable
attention for their excellent natural language processing capabilities. Nonetheless, these …

[HTML][HTML] Position: TrustLLM: Trustworthiness in large language models

Y Huang, L Sun, H Wang, S Wu… - International …, 2024 - proceedings.mlr.press
Large language models (LLMs) have gained considerable attention for their excellent
natural language processing capabilities. Nonetheless, these LLMs present many …

A survey of adversarial defenses and robustness in nlp

S Goyal, S Doddapaneni, MM Khapra… - ACM Computing …, 2023 - dl.acm.org
In the past few years, it has become increasingly evident that deep neural networks are not
resilient enough to withstand adversarial perturbations in input data, leaving them …

[PDF][PDF] Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network robustness verification

S Wang, H Zhang, K Xu, X Lin, S Jana… - Advances in neural …, 2021 - proceedings.neurips.cc
Bound propagation based incomplete neural network verifiers such as CROWN are very
efficient and can significantly accelerate branch-and-bound (BaB) based complete …

Trustworthy AI: From principles to practices

B Li, P Qi, B Liu, S Di, J Liu, J Pei, J Yi… - ACM Computing Surveys, 2023 - dl.acm.org
The rapid development of Artificial Intelligence (AI) technology has enabled the deployment
of various systems based on it. However, many current AI systems are found vulnerable to …

General cutting planes for bound-propagation-based neural network verification

H Zhang, S Wang, K Xu, L Li, B Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Bound propagation methods, when combined with branch and bound, are among the most
effective methods to formally verify properties of deep neural networks such as correctness …

First three years of the international verification of neural networks competition (VNN-COMP)

C Brix, MN Müller, S Bak, TT Johnson, C Liu - International Journal on …, 2023 - Springer
This paper presents a summary and meta-analysis of the first three iterations of the annual
International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021 …

Certified adversarial robustness via randomized smoothing

J Cohen, E Rosenfeld, Z Kolter - international conference on …, 2019 - proceedings.mlr.press
We show how to turn any classifier that classifies well under Gaussian noise into a new
classifier that is certifiably robust to adversarial perturbations under the L2 norm. While this" …