The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and challenges
Homophily principle,\ie {} nodes with the same labels or similar attributes are more likely to
be connected, has been commonly believed to be the main reason for the superiority of …
be connected, has been commonly believed to be the main reason for the superiority of …
Simgrace: A simple framework for graph contrastive learning without data augmentation
Graph contrastive learning (GCL) has emerged as a dominant technique for graph
representation learning which maximizes the mutual information between paired graph …
representation learning which maximizes the mutual information between paired graph …
LightGCL: Simple yet effective graph contrastive learning for recommendation
Graph neural network (GNN) is a powerful learning approach for graph-based recommender
systems. Recently, GNNs integrated with contrastive learning have shown superior …
systems. Recently, GNNs integrated with contrastive learning have shown superior …
Spectral feature augmentation for graph contrastive learning and beyond
Although augmentations (eg, perturbation of graph edges, image crops) boost the efficiency
of Contrastive Learning (CL), feature level augmentation is another plausible …
of Contrastive Learning (CL), feature level augmentation is another plausible …
Unsupervised representation learning for time series: A review
Unsupervised representation learning approaches aim to learn discriminative feature
representations from unlabeled data, without the requirement of annotating every sample …
representations from unlabeled data, without the requirement of annotating every sample …
Simple contrastive graph clustering
Contrastive learning has recently attracted plenty of attention in deep graph clustering due to
its promising performance. However, complicated data augmentations and time-consuming …
its promising performance. However, complicated data augmentations and time-consuming …
Bond: Benchmarking unsupervised outlier node detection on static attributed graphs
Detecting which nodes in graphs are outliers is a relatively new machine learning task with
numerous applications. Despite the proliferation of algorithms developed in recent years for …
numerous applications. Despite the proliferation of algorithms developed in recent years for …
Knowledge graph contrastive learning based on relation-symmetrical structure
Knowledge graph embedding (KGE) aims at learning powerful representations to benefit
various artificial intelligence applications. Meanwhile, contrastive learning has been widely …
various artificial intelligence applications. Meanwhile, contrastive learning has been widely …
Better with less: A data-active perspective on pre-training graph neural networks
Pre-training on graph neural networks (GNNs) aims to learn transferable knowledge for
downstream tasks with unlabeled data, and it has recently become an active research area …
downstream tasks with unlabeled data, and it has recently become an active research area …
Mole-bert: Rethinking pre-training graph neural networks for molecules
Recent years have witnessed the prosperity of pre-training graph neural networks (GNNs)
for molecules. Typically, atom types as node attributes are randomly masked and GNNs are …
for molecules. Typically, atom types as node attributes are randomly masked and GNNs are …