Towards a science of human-AI decision making: An overview of design space in empirical human-subject studies

V Lai, C Chen, A Smith-Renner, QV Liao… - Proceedings of the 2023 …, 2023 - dl.acm.org
AI systems are adopted in numerous domains due to their increasingly strong predictive
performance. However, in high-stakes domains such as criminal justice and healthcare, full …

Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey

W Ding, M Abdel-Basset, H Hawash, AM Ali - Information Sciences, 2022 - Elsevier
The continuous advancement of Artificial Intelligence (AI) has been revolutionizing the
strategy of decision-making in different life domains. Regardless of this achievement, AI …

[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

S Ali, T Abuhmed, S El-Sappagh, K Muhammad… - Information fusion, 2023 - Elsevier
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …

[PDF][PDF] Ai transparency in the age of llms: A human-centered research roadmap

QV Liao, JW Vaughan - arxiv preprint arxiv:2306.01941, 2023 - assets.pubpub.org
The rise of powerful large language models (LLMs) brings about tremendous opportunities
for innovation but also looming risks for individuals and society at large. We have reached a …

Towards a science of human-ai decision making: a survey of empirical studies

V Lai, C Chen, QV Liao, A Smith-Renner… - arxiv preprint arxiv …, 2021 - arxiv.org
As AI systems demonstrate increasingly strong predictive performance, their adoption has
grown in numerous domains. However, in high-stakes domains such as criminal justice and …

A multidisciplinary survey and framework for design and evaluation of explainable AI systems

S Mohseni, N Zarei, ED Ragan - ACM Transactions on Interactive …, 2021 - dl.acm.org
The need for interpretable and accountable intelligent systems grows along with the
prevalence of artificial intelligence (AI) applications used in everyday life. Explainable AI …

Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty

U Bhatt, J Antorán, Y Zhang, QV Liao… - Proceedings of the …, 2021 - dl.acm.org
Algorithmic transparency entails exposing system properties to various stakeholders for
purposes that include understanding, improving, and contesting predictions. Until now, most …

The science of visual data communication: What works

SL Franconeri, LM Padilla, P Shah… - … Science in the …, 2021 - journals.sagepub.com
Effectively designed data visualizations allow viewers to use their powerful visual systems to
understand patterns in data across science, education, health, and public policy. But …

Trends and trajectories for explainable, accountable and intelligible systems: An hci research agenda

A Abdul, J Vermeulen, D Wang, BY Lim… - Proceedings of the …, 2018 - dl.acm.org
Advances in artificial intelligence, sensors and big data management have far-reaching
societal impacts. As these systems augment our everyday lives, it becomes increasing-ly …

When confidence meets accuracy: Exploring the effects of multiple performance indicators on trust in machine learning models

A Rechkemmer, M Yin - Proceedings of the 2022 chi conference on …, 2022 - dl.acm.org
Previous research shows that laypeople's trust in a machine learning model can be affected
by both performance measurements of the model on the aggregate level and performance …