Load forecasting models in smart grid using smart meter information: a review

F Dewangan, AY Abdelaziz, M Biswal - Energies, 2023 - mdpi.com
The smart grid concept is introduced to accelerate the operational efficiency and enhance
the reliability and sustainability of power supply by operating in self-control mode to find and …

A review on time series forecasting techniques for building energy consumption

C Deb, F Zhang, J Yang, SE Lee, KW Shah - Renewable and Sustainable …, 2017 - Elsevier
Energy consumption forecasting for buildings has immense value in energy efficiency and
sustainability research. Accurate energy forecasting models have numerous implications in …

An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms

X Li, Z Wang, C Yang, A Bozkurt - Energy, 2024 - Elsevier
In recent years, the escalating demand for electric energy has underscored the need for
robust prediction models capable of accurately anticipating consumption patterns. The …

Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling

GF Fan, M Yu, SQ Dong, YH Yeh, WC Hong - Utilities Policy, 2021 - Elsevier
This paper develops a novel short-term load forecasting model that hybridizes several
machine learning methods, such as support vector regression (SVR), grey catastrophe (GC …

Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting

L Wen, K Zhou, S Yang, X Lu - Energy, 2019 - Elsevier
A deep recurrent neural network with long short-term memory units (DRNN-LSTM) model is
developed to forecast aggregated power load and the photovoltaic (PV) power output in …

Forecasting methods in energy planning models

KB Debnath, M Mourshed - Renewable and Sustainable Energy Reviews, 2018 - Elsevier
Energy planning models (EPMs) play an indispensable role in policy formulation and energy
sector development. The forecasting of energy demand and supply is at the heart of an EPM …

A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with …

F He, J Zhou, Z Feng, G Liu, Y Yang - Applied energy, 2019 - Elsevier
Short-term load forecasting plays an essential role in the safe and stable operation of power
systems and has always been a vital research issue of energy management. In this …

Grey data analysis

S Liu, Y Yang, J Forrest - Springer Singapore, Singapore, Doi, 2017 - Springer
In this book, we answer the calls of the readers of our previous publications and
systematically present the main advances in grey system theory and applications. By …

A comprehensive survey on particle swarm optimization algorithm and its applications

Y Zhang, S Wang, G Ji - Mathematical problems in engineering, 2015 - Wiley Online Library
Particle swarm optimization (PSO) is a heuristic global optimization method, proposed
originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used …

Short term electricity load forecasting using a hybrid model

J Zhang, YM Wei, D Li, Z Tan, J Zhou - Energy, 2018 - Elsevier
Short term electricity load forecasting is one of the most important issue for all market
participants. Short term electricity load is affected by natural and social factors, which makes …