A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - International Journal of …, 2024 - Springer
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …

A comprehensive survey on graph neural networks

Z Wu, S Pan, F Chen, G Long, C Zhang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Deep learning has revolutionized many machine learning tasks in recent years, ranging
from image classification and video processing to speech recognition and natural language …

Graph contrastive learning with augmentations

Y You, T Chen, Y Sui, T Chen… - Advances in neural …, 2020 - proceedings.neurips.cc
Generalizable, transferrable, and robust representation learning on graph-structured data
remains a challenge for current graph neural networks (GNNs). Unlike what has been …

Graphmae: Self-supervised masked graph autoencoders

Z Hou, X Liu, Y Cen, Y Dong, H Yang, C Wang… - Proceedings of the 28th …, 2022 - dl.acm.org
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly,
generative SSL has seen emerging success in natural language processing and other …

Open graph benchmark: Datasets for machine learning on graphs

W Hu, M Fey, M Zitnik, Y Dong, H Ren… - Advances in neural …, 2020 - proceedings.neurips.cc
Abstract We present the Open Graph Benchmark (OGB), a diverse set of challenging and
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …

[HTML][HTML] Graph neural networks: A review of methods and applications

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang… - AI open, 2020 - Elsevier
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …

How powerful are graph neural networks?

K Xu, W Hu, J Leskovec, S Jegelka - arxiv preprint arxiv:1810.00826, 2018 - arxiv.org
Graph Neural Networks (GNNs) are an effective framework for representation learning of
graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector …

Self-supervised graph learning for recommendation

J Wu, X Wang, F Feng, X He, L Chen, J Lian… - Proceedings of the 44th …, 2021 - dl.acm.org
Representation learning on user-item graph for recommendation has evolved from using
single ID or interaction history to exploiting higher-order neighbors. This leads to the …

Simplifying graph convolutional networks

F Wu, A Souza, T Zhang, C Fifty, T Yu… - International …, 2019 - proceedings.mlr.press
Abstract Graph Convolutional Networks (GCNs) and their variants have experienced
significant attention and have become the de facto methods for learning graph …

Self-supervised learning: Generative or contrastive

X Liu, F Zhang, Z Hou, L Mian, Z Wang… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Deep supervised learning has achieved great success in the last decade. However, its
defects of heavy dependence on manual labels and vulnerability to attacks have driven …