A comprehensive survey on pretrained foundation models: A history from bert to chatgpt
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
A comprehensive survey on graph neural networks
Deep learning has revolutionized many machine learning tasks in recent years, ranging
from image classification and video processing to speech recognition and natural language …
from image classification and video processing to speech recognition and natural language …
Graph contrastive learning with augmentations
Generalizable, transferrable, and robust representation learning on graph-structured data
remains a challenge for current graph neural networks (GNNs). Unlike what has been …
remains a challenge for current graph neural networks (GNNs). Unlike what has been …
Graphmae: Self-supervised masked graph autoencoders
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly,
generative SSL has seen emerging success in natural language processing and other …
generative SSL has seen emerging success in natural language processing and other …
Open graph benchmark: Datasets for machine learning on graphs
Abstract We present the Open Graph Benchmark (OGB), a diverse set of challenging and
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …
[HTML][HTML] Graph neural networks: A review of methods and applications
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …
information among elements. Modeling physics systems, learning molecular fingerprints …
How powerful are graph neural networks?
Graph Neural Networks (GNNs) are an effective framework for representation learning of
graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector …
graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector …
Self-supervised graph learning for recommendation
Representation learning on user-item graph for recommendation has evolved from using
single ID or interaction history to exploiting higher-order neighbors. This leads to the …
single ID or interaction history to exploiting higher-order neighbors. This leads to the …
Simplifying graph convolutional networks
Abstract Graph Convolutional Networks (GCNs) and their variants have experienced
significant attention and have become the de facto methods for learning graph …
significant attention and have become the de facto methods for learning graph …
Self-supervised learning: Generative or contrastive
Deep supervised learning has achieved great success in the last decade. However, its
defects of heavy dependence on manual labels and vulnerability to attacks have driven …
defects of heavy dependence on manual labels and vulnerability to attacks have driven …