[HTML][HTML] Majorization for (0, 1)-matrices
G Dahl, A Guterman, P Shteyner - Linear Algebra and its Applications, 2020 - Elsevier
This paper deals with the important notion of majorization. We study majorization for
matrices, and focus on (0, 1)-matrices. We prove several results concerning such matrix …
matrices, and focus on (0, 1)-matrices. We prove several results concerning such matrix …
Linear operators preserving strong majorization of (0, 1)-matrices
A Guterman, P Shteyner - Linear Algebra and its Applications, 2023 - Elsevier
We obtain a complete characterization of linear operators that preserve strong majorization
on (0, 1)-matrices. To do this we introduce a new matrix invariant of combinatorial nature …
on (0, 1)-matrices. To do this we introduce a new matrix invariant of combinatorial nature …
Linear converters of weak, directional and strong majorizations
A Guterman, P Shteyner - Linear Algebra and its Applications, 2021 - Elsevier
In the theory of matrix majorizations there are three types of majorizations that play an
important role. These are weak, strong and directional majorizations for matrices. In this …
important role. These are weak, strong and directional majorizations for matrices. In this …
On the minus partial order in control systems
In this paper, the minus matrix partial order is considered to introduce the concept of minus
partial ordered control systems. The transmission of the reachability property under this …
partial ordered control systems. The transmission of the reachability property under this …
Linear operators preserving majorization of matrix tuples
AE Guterman, PM Shteyner - Vestnik St. Petersburg University …, 2020 - Springer
In this paper, we consider weak, directional and strong matrix majorizations. Namely, for
square matrices A and B of the same size we say that A is weakly majorized by B if there is a …
square matrices A and B of the same size we say that A is weakly majorized by B if there is a …
Linear preservers of rc-majorization on matrices
M Soleymani - Czechoslovak Mathematical Journal, 2024 - Springer
Let A, B be n× m matrices. The concept of matrix majorization means the j th column of A is
majorized by the j th column of B and this is done for all j by a doubly stochastic matrix D. We …
majorized by the j th column of B and this is done for all j by a doubly stochastic matrix D. We …
Линейные отображения, сохраняющие мажоризацию наборов матриц
АЭ Гутерман, ПМ Штейнер - Вестник Санкт-Петербургского …, 2020 - cyberleninka.ru
В работе рассматриваются слабая, направленная и сильная мажоризации матриц. А
именно, говорят, что матрица A слабо мажорируется матрицей B, если найдется такая …
именно, говорят, что матрица A слабо мажорируется матрицей B, если найдется такая …
Linear Operators Preserving Combinatorial Matrix Sets
PM Shteyner - Journal of Mathematical Sciences, 2022 - Springer
The paper investigates linear functionals ϕ: ℝ n→ ℝ preserving a set ℳ⊆ ℝ, ie, ϕ: ℝ n→ ℝ
such that ϕ (v)∈ ℳ for any vector u∈ ℝ n with components in ℳ. For various types of subsets …
such that ϕ (v)∈ ℳ for any vector u∈ ℝ n with components in ℳ. For various types of subsets …
Конвертация столбцовой мажоризации
ПМ Штейнер - Записки научных семинаров ПОМИ, 2020 - mathnet.ru
Пусть Mn, m обозначает множество всех действительных n× m матриц, пишем Mn,
если m= n. В статье будут использоваться следующие матрицы подходящих размеров …
если m= n. В статье будут использоваться следующие матрицы подходящих размеров …
Ordering of Transformed Recorded Electroencephalography (EEG) Signals by a Novel Precede Operator
AA Ahmad Fuad, T Ahmad - Journal of Mathematics, 2021 - Wiley Online Library
Recorded electroencephalography (EEG) signals can be represented as square matrices,
which have been extensively analyzed using mathematical methods to extract invaluable …
which have been extensively analyzed using mathematical methods to extract invaluable …