Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
A review of applications in federated learning
L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …
A review of medical image data augmentation techniques for deep learning applications
Research in artificial intelligence for radiology and radiotherapy has recently become
increasingly reliant on the use of deep learning‐based algorithms. While the performance of …
increasingly reliant on the use of deep learning‐based algorithms. While the performance of …
An overview of deep learning in medical imaging focusing on MRI
AS Lundervold, A Lundervold - ar** new medical image
processing algorithms, and deep learning based models have been remarkably successful …
processing algorithms, and deep learning based models have been remarkably successful …
Advances in medical image analysis with vision transformers: a comprehensive review
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …
has recently also triggered broad interest in Computer Vision. Among other merits …
Transmorph: Transformer for unsupervised medical image registration
In the last decade, convolutional neural networks (ConvNets) have been a major focus of
research in medical image analysis. However, the performances of ConvNets may be limited …
research in medical image analysis. However, the performances of ConvNets may be limited …
Deep learning in medical image registration: a review
This paper presents a review of deep learning (DL)-based medical image registration
methods. We summarized the latest developments and applications of DL-based registration …
methods. We summarized the latest developments and applications of DL-based registration …
Deep learning in medical image registration: a survey
The establishment of image correspondence through robust image registration is critical to
many clinical tasks such as image fusion, organ atlas creation, and tumor growth monitoring …
many clinical tasks such as image fusion, organ atlas creation, and tumor growth monitoring …