[HTML][HTML] Deep learning in optical metrology: a review

C Zuo, J Qian, S Feng, W Yin, Y Li, P Fan… - Light: Science & …, 2022 - nature.com
With the advances in scientific foundations and technological implementations, optical
metrology has become versatile problem-solving backbones in manufacturing, fundamental …

Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review

Y Lu, D Chen, E Olaniyi, Y Huang - Computers and Electronics in …, 2022 - Elsevier
In agricultural image analysis, optimal model performance is keenly pursued for better
fulfilling visual recognition tasks (eg, image classification, segmentation, object detection …

Multimodal foundation models: From specialists to general-purpose assistants

C Li, Z Gan, Z Yang, J Yang, L Li… - … and Trends® in …, 2024 - nowpublishers.com
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …

Deep long-tailed learning: A survey

Y Zhang, B Kang, B Hooi, S Yan… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …

Learning enriched features for fast image restoration and enhancement

SW Zamir, A Arora, S Khan, M Hayat… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Given a degraded input image, image restoration aims to recover the missing high-quality
image content. Numerous applications demand effective image restoration, eg …

Uformer: A general u-shaped transformer for image restoration

Z Wang, X Cun, J Bao, W Zhou… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this paper, we present Uformer, an effective and efficient Transformer-based architecture
for image restoration, in which we build a hierarchical encoder-decoder network using the …

Galip: Generative adversarial clips for text-to-image synthesis

M Tao, BK Bao, H Tang, C Xu - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Synthesizing high-fidelity complex images from text is challenging. Based on large
pretraining, the autoregressive and diffusion models can synthesize photo-realistic images …

Diffusion models without attention

JN Yan, J Gu, AM Rush - … of the IEEE/CVF Conference on …, 2024 - openaccess.thecvf.com
In recent advancements in high-fidelity image generation Denoising Diffusion Probabilistic
Models (DDPMs) have emerged as a key player. However their application at high …

MFFN: image super-resolution via multi-level features fusion network

Y Chen, R **a, K Yang, K Zou - The Visual Computer, 2024 - Springer
Deep convolutional neural networks can effectively improve the performance of single-
image super-resolution reconstruction. Deep networks tend to achieve better performance …

Real-world single image super-resolution: A brief review

H Chen, X He, L Qing, Y Wu, C Ren, RE Sheriff, C Zhu - Information Fusion, 2022 - Elsevier
Single image super-resolution (SISR), which aims to reconstruct a high-resolution (HR)
image from a low-resolution (LR) observation, has been an active research topic in the area …